
WW O M6 RULE BASED ANALYSIS OF COMPUTER SECURiTiiU) /
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER
SCIENCE R W BALDWIN MAR 98 MIT/LCS/TR-4@i

UNCLASSIFIED NS49--15F/G 12/B N

MEMOEEEEEEEEEEE
Mhhhhhhhhhhhhl
mhhhhhhhhhhhhl

I Khhhhhhhhhhhh
I 'lfllfllfllfllfllfllf

S2.2

L16

SL.0 1112.

ME

Unclassified P
SECURITY CLASSIFICATION OF THIS PAGE

E)FI4fqOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATola e I lb RESTRICTIVE MARKINGS

Unclassified__________________________
2a. SECURITY CLASSIFICATION AUIT Y MAT Z J 1988 3. DISTRIPUTION/AVAI.ABILITY OF REPORT

Approved for public release; distribution
2b DECLASSIFICATION/DOWNGRAq HEDULE D is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(Snq S MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-401 DARPA/DOD N00014-83-K-0125

6.. NAME OF PERFORMING ORGANIZATION ,6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science (If applicable) Office of Naval Research/Dept. of Navy

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

&a. NAME OF FUNDING 'SPONSORING Sb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD

c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Blvd. ELEMENT NO. NO. NO ACCESSION NO
Arlington, VA 22217 _

l1. TITLE (Include Security Classification)

RULE BASED ANALYSIS OF COMPUTER SECURITY

12 PERSONAL AUTHOR(S)
Baldwin. Robert W.

13a. TYPE OF REPORT 13b TIME COVERED I4 ~EO EORT (Year, Month, Ooy) 15S PAGE COUNT _
Technic'al FROM TO 1988 MarchI 92 -

16. SUPPLEMENTARY NOTATION

17 COSATi CODES 18 SUBJECT TERMS (Continue on reverse if necessry a)nd identify by block number)

FIELD GROUP SUB-GROUP computer security, expert systems, rule based systems,

1 security analysis, operational security,
Unix, Kuang

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Computers are rarely as secure as they could be. Users are lax or inconsistent in
the ways they configure a computer's protection system, and these user mistakes often

lead to serious security holes. For example, a privileged user might accidentally make
his login initialization file publicly writable and that mistake could allow ordinary

users to acquire super-user privileges. This sort of operational security problem is not%

caused by software bugs. It can happen even if all the computer's trusted programs behave

according to their specifications. Operational security problems arise from complex inter-

actions between the pieces of a computer's protection system.

This report describes a tool for improving the operational security of discretionary

access control systems. The tool is a rule based system that knows about the behavior

of the computer's software and the tricks used by attackers. The tool uses this knowledge

to deduce the set of privileges directly or indirectly accessible to each user. Once the

set of accessible privileges has been deduced, that set can be compared against a site

20 DISTRIBUTION i AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLASSI;IED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 0
Judy Little 1 (617) 253-5894 I

u PORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

Unclassified

88 6 ~ J4

0
19. specific access policy and any differences can be reported.

A prototype of this tool has been used at MIT to improve the security

of its Unix computers. About twice each month the prototype identifies a

database entry or file access mode that has been changed incorrectly and

and accidentally allows untrusted users to acquire super-user privileges.

J0

ACoossion For

NTIS GRA&I
DTIC TAB 0
Unannounced 03 tustifioea ion--

Distribution/

Ayallablillty Codesvilado[19 t.tspca

Rule Based Analysis of
Computer Security

by

Robert W. Baldwin

) Massachusetts Institute of Technology
June, 1987

This research was supported by the Defense Advanced Research Projects Agency
of the Department of Defense and was monitored by the Office of Naval
Research under contract number N00014-83-K-0125.

Massachusetts Institute of Technology S
Laboratory for Computer Science
Cambridge, Massachusetts 02139

8-0 S

Rule Based Analysis of
Computer Security

by
Robert W. Baldwin

Submitted to the
Department of Electrical Engineering and Computer Science

on May 1, 1Q87 in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Abstract
Computers are rarely as secure as they could be. Users are lax or inconsistent in
the ways they configure a computer's protection system, and these user mistakes
often lead to serious security holes. For example, a privileged user might
accidentally make his login initialization file publicly writable and that mistake
could allow ordinary users to acquire super-user privileges. This sort of
operational accurity problem is not caused by software bugs. It can happen even
if all the computer's trusted programs behave according to their specifications.
Operational security problems arise from complex interactions between the pieces
of a computer's protection system.>

This report describes a tool for improving the operational security of
discretionary access control systems. The tool is a rule based system that knows
about the behavior of the computer's software and the tricks used by attackers.
The tool uses this knowledge to deduce the set of privileges directly or indirectly
accessible to each user. Once the set of accessible privileges has been deduced,
that set can be compared against a site specific access policy and any differences
can be reported. tV I7 ~

A prototype of this tool has been used at NfT to improve the security of its Unix
computers. About twice each month the prototype identifies a database entry or
file access mode that has been changed incorrectly and accidentally allows
untrusted users to acquire super-user privileges.

Thesis Supervisor: Stephen A. Ward
Title: Professor of Electrical Engineering and Computer Science

Key 'Words and Phrases: computer security, expert systems, rule based systems,
security analysis, operational security, Unix, Kuang

2

1 1 1 1 1 J I 1 1 '1

Acknowledgments

I would like to thank my thesis advisor, Professor Stephen A. Ward, for
providing an outstanding environment in which to complete this research.
Professor Jerome H. Saltzer and Dr. George A. Michael provided guidance and
encouragement which was very important during the early stages of research.
Professor David K. Gifford helped me define the scope of this thesis. My thanks
also go to Professors Randall Davis and Robert H. Halstead Jr. for their
comments and advice as thesis readers.

This research project grew out of an attempt to display the structure of
security systems using the innovative imagery found in William Gibson's book
Neuromancer [9]. Turning this idea into a finished piece of research required
many skills, most of which I learned while working with Dr. David D. Clark and
Professor Fernado J. Corbato. I greatly appreciate the experience of working
with them.

Noel Chiappa has my special thanks for teaching me the art of building
large software systems and for being a friend. I want to thank Cliff Neuman,
Tim Shepard, and those who prefer to remain nameless for many conversations
on this project and security in general.

For providing diversions, my thanks go to the folks at East Campus.

I want to thank my parents for their love and support. I am deeply
grateful for the patience, encouragement, and love of my wife, Maureen Baldwin.

3IR

Table of Contents
Chapter One: Operational Security Problems 7

1.1 Existing Solutions to Operational Security Problems 10
1.2 Kuang: Rule Based Security Checking 12
1.3 Outline of Thesis 14
1.4 Intellectual Background 16

Chapter Two: Scope of the Solution 22
2.1 Operational Security Problems 22
2.2 Functional Specification of U-Kuang 24
2.3 Modes of Operation 26
2.4 Policy Specification Languages 27

Chapter Three: An Abstract Security Model 31
3.1 Decomposition of the Analysis Problem 32
3.2 Model for Trusted Programs 40
3.3 Model for Attacker Tricks 48
3.4 Transitive Closure Step 53
3.5 Summary of Knowledge Model 54

Chapter Four: Description of U-Kuang 56
4.1 Structure of U-Kuang 56
4.2 U-Kuang's RBS 57
4.3 Example of Security Analysis 60
4.4 Knowledge about Unix Security 68

Chapter Five: Experience Running U-Kuang 77

Chapter Six: Limitations and Extensions 81
6.1 Other Operating Systems 81
6.2 Analyzing the Rules 82
6.3 Synthesizing Protection Decisions 83
6.4 Computer Security Monitoring 84

Chapter Seven: Conclusions 85
7.1 Highlights of the Problem 85
7.2 Overview of the Solution 87
7.3 Conclusions 89

References 91

4

Table of Figures

Figue 21: Uhanled pertionl Scuriy Pobles 2

Figure 2-2:Unae Operational Security Problems 23

Figure 2-3: BNF for the Privilege Access Table 29
Figure 2-4: Sample Policy Specification 30
Figure 3-1: Steps in Security Analysis 33
Figure 3-2: Sample Table of Privilege Controlling Operations 36
Figure 3-3: Sample Operation Grant Matrix 39
Figure 3-4: Sample Privilege Access Table 40
Figure 3-5: Attributes of a Process Object 430
Figure 3-6: Unix and the Trusted Program Model 44
Figure 3-7: VMS and the Trusted Program Model 45
Figure 3-8: Possible Actions for a Process 46
Figure 3-g: Object Properties in the Model of Attacker Tricks 51
Figure 3-10: Object Operations in the Model of Attacker Tricks 52
Figure 4-1: Structure of U-Kuang 57
Figure 4-2: U-Kuang's Abstraction Tree 59
Figure 4-3: Plan to Exploit an Operation Security Hole 62
Figure 4-4: Object Attributes for Analysis Example 63
Figure 4-5: Rules for Analysis Example 64
Figure 4-6: Rules to Control a Process 70
Figure 4-7: Rules to Replace a File 71
Figure 4-8: Rules to Write a File 71

.....

Table of Tables

Table 3-1: Sample Knowledge About Trusted Programs 42
Table 3-2: Sample Facts for The Model of Attacker Tricks 49
Table 3-3: Objects in the Model of Trusted Programs 55
Table 3-4: Objects in the Model of Attacker Tricks 55

0

S!
S.

0=

Chapter One

Operational Security Problems

Computer systems are rarely as secure as they could be. Even when the

operating system provides good protection mechanisms users may be lax or

inconsistent in their use of the protection mechanisms leading to security holes.

People make mistakes that cause to operational security problems. These

problems are not caused by software bu6-; they are caused by user errors. An

operating system that has been certified to behave as expected (e.g., Al

certification [3]) can still have operational security problems. A certified system

will do exactly what it is told to do, but the overall effect may not be what the

users desired.

This thesis focuses on the computer aspect of operational security

problems as opposed to the physical or administrative aspects of operational

security. A typical operational security problem arises when one user allows a

group of other users to have write access to his or her home directory. A user

might grant this kind of access to create a project directory for a team of people,

or it might be granted accidentally as part of making some file readable to the

group. On many computer systems, granting this access allows all the members

of the group to bootstrap their privileges to include the privileges available to the

original user.

On Unix, write access to a user's home directory grants access to that

user's privileges because of an interaction between the file system kernel and the

interactive command interpreter (i.e., the shell or executive). The Unix file

system interprets write access to a directory to mean that a user can delete and

7

create files in that directory. When a user logs in, the Unix command interpreter

automatically executes commands from an initialization file stored in the user's

home directory. An attacker who has write access to the user's directory can

delete the original login initialization file and replace it with a file that executes

any desired commands. Those commands will be executed with the user's

privileges next time that user logs in. Typically an attacker would choose

commands that make it easier for him to get into that users account. For

example, the commands might make all the user's files publically readable and

writable.

This example illustrates the central focus of this research. It shows how

the interactions between trusted programs can lead to operational security

problems. The goal of this research is to develop a rule based system that can

systematically analyze these interactions and report on any undesirable

interactions that are possible on a particular machine.

Experience from this research shows that operational security problems are

common and serious. One system with a sophisticated user community and a

security conscious staff developed serious security holes about twice a month.

The thesis of this dissertation is that rule based systems can be used to analyze '

the operational security of computer systems and identify protection decisions

(e.g., the settings of the access controls on files and directories, or the contents of

system tables) that lead to inconsistencies between the desired access policies and

the actual access policies.

The major contribution of this research is an abstract model for

representing the security relevant behavior of trusted programs (e.g., operating

systems, command interpreters, mail systems, archive daemons, etc.). The model

has enough detail that it can represent many of the sources of operational

security problems, but not so much detail that exhaustively analyzing the

1W -*0o N -.4 V

interactions between trusted programs is infeasible. This thesis refers to security

checkers based on this model as Kuang System81.

The best way to show that Kuang systems can improve the security of

information systems would be to build Kuang systems for several different

information systems and test each one for its effectiveness at finding security

holes. That would take a long time. This thesis takes a less time consuming

approach that supports a weaker statement. The approach is to show that a

Kuang system can solve both the easy and the hard problems which are known

to arise in one information system. The philosophy behind this approach is that

one learns more about a technique by finding its limits than by showing how it

0
can solve a wide range of easy problems. ,

I chose to build a Kuang system for Unix. The advantage of choosing

Unix is that there are published works ([10], [25]) that identify the operational

security problems which can plague a Unix system. If the Unix checker, called

U-Kuang can find all the problems that have been published, then that is a good

indication that Kuang systems can significantly improve the security of

information systems for which the problems are known in advance.

The bulk of this thesis describes U-Kuang and the insights gained from

running it on MIT's Project Athena computers. U-Kuang was able to detect all

the problems that have been published, and by running it I learned that those

problems are common and recurring. U-Kuang almost always found a problem .

when it was first run on a computer. After a learning period, the rate at which

IKuang rhymes with twang. This research project was inspired by William Gibson's book
Neuromancer, which won the 1984 Nebula and Hugo awards for best science fiction novel.
Gibson's book describes innovative ways to visualize the structure of information systems. In
particular, it describes a program called a Kuang Grade Mark 11 Ice Breaker (ice refers to the

mechanisms used to protect access to information). The program described here is a greatly *

simplified version of that ice breaker program.

172

holes were created settled down to a few serious security holes per month (most

holes granted super-user privileges to all users). The error rate was highest on

systems where the staff did not care about security.

1.1 Existing Solutions to Operational Security Problems

Operational security problems appear to be caused by the complexity of

modern protection systems. Modern information systems contain numerous

trusted programs that implement the automatic management and flexible sharing

mechanisms desired by computer users (e.g., deleting old scratch files, or

invoking programs to process incoming mail). The kind of flexibility and

automatic management desired by computer users can be seen by comparing a

locked bookcase to the publishing office of the New York Times. Both systems

have a library of material that must be available to the users, but it should be

obvious why the access control solution which works for a bookcase does not

generalize to solve the problems of controlling access within the publishing office.

The publishing office is going to have complexity problems that do not exist with

a bookcase. The fundamental functional requirements for computers have

changed in much the same way that the functional requirements of a newspaper

publishing house differ from that of a bookcase. Condensing, distributing and

otherwise adding value to information is the main job of the publishing house.

Storing and retrieving information is only a small part of the job. The

publishing house has many different kinds of resources that must be controlled

including the private notes of reporters, the long distance phone services, the

staff in the research library, the printing presses, the personnel data, the photo

library, the janitors that clean offices, the editors who finalize articles, and the

money that pays for it all. Protecting diverse resources requires diverse

protection mechanisms that can interact in complex ways. If users want a

computer system that is like a publishing office, they will have to cope with

complexity problems that did not exist in older computer systems.

10

110, F

0

One way to solve the complexity problem is to build new kinds of

protection systems that are easier to understand. This approach is discussed in

the background section (1.4). So far, no one has proposed a system that is easy

to understand, easy to analyze, and flexible enough to meet the needs of modern

computer users2.

Currently system administrators cope with the complexity of their

protection systems by enforcing a large number of rules-of-thumb. One such

rule-of-thumb on Unix is to make sure that home directories can only be written

by the person who logs into that directory. Other Unix injunctions deal with 0

search paths, system tables, and programming conventions.

This rule-of-thumb approach helps improve security but it is not

systematic and it often sacrifices many of the desirable features of the computer

system. Another problem is that these rules are ad hoc. Rules are generated as

administrators notice problems. They are not generated from a deep

understanding of the interactions between trusted program and thus tend to be S

incomplete. There is no assurance that they cover even a small fraction of the

possible security problems.

The rule-of-thumb technique for solving operational security problems

tends to be severe. It often sacrifices the flexibility that initially attracted the

users to a particular computer system. In order to simplify the rules, a wide

range of desirable forms of sharing or automatic system management are

forbidden. For example, a common rule for Unix is to insist that only the super-

user has write access to the /etc directory because anyone who can write that

directory can replace the password file, /etc/passwd. This rule throws away

the possibility of having a group of trusted users who could use that access to

2 Notice that two of the three goals can easily be achieved by just turning your computer off.

'1

perform system maintenance. Without the restrictive rule-of-thumb, the

administrator would need to check to see if untrusted users could indirectly

acquire super-user privileges due to a security mistake made by the members of

the trusted group. In order to avoid that time consuming task, the administrator

enforces the strict rule-of-thumb.

The security checking tool described in this thesis helps users cope with

complexity without sacrificing flexible sharing or automatic system management.

The idea is to build a knowledged based model of each trusted program and then

use a general inference algorithm to analyze the interactions between these

programs which can occur on a particular machine. To the extent that the

model is accurate and complete, the tool can compute a list of the privileges

accessible to each user of this particular computer. That list can be compared to

the desired accesses and any mistakes can be identified and corrected. This

approach is tailored to the security requirements of the computer's users. They

only need to sacrifice as much flexibility as is required to meet their specific

security policy. They do not need to follow rules-of-thumb that were designed

for the most conservative situation.

1.2 Kuang: Rule Based Security Checking

A computer system is operationally secure if it behaves as its users expect

it to behave. All the desired operations should be allowed, and all the undesired

operations should be disallowed 3. The task of checking operational security can ,

be divided into an analysis phase which determines the set of privileges available

to each user and a comparison phase which checks the accessible operations

against the desired operations.

3Not allowing desired operations is just as much a problem as allowing undesired access. In
fact, my experience is that security holes are often created when users are trying to make some %

particular piece of information available to others. They end up granting more access than they
intended.

12

... .~ -LI r,)

This research focuses on the analysis phase, so a very simple language is

used to specify the desired access policy. The policy specification is table that

shows which users should be able to access each privilege. A privilege is any

ticket that the operating system checks to decide whether to grant access to a

protected resource. On Unix there are two kinds of privileges called user-ids and

group-ids. The details of which privileges should be required to access each file

or directory are not stated. Only the distribution of privileges is specified. The

purpose of the analysis is to determine which users can directly or indirectly

access each privilege.

The rule based security checker described here works by simulating the

execution of a computer from power-up to shutdown and at each step of the

simulation the attacker tricks are consulted to see if that step can be subverted

to grant extra privileges to any user. U-Kuang starts with the knowledge that

when a Unix system is booted, it executes the program init with super-user

privileges. The checker knows that init executes commands found in the file

/etc/rc. When that finishes init sets up login servers for the terminal devices

specified in another ile. U-Kuang knows that privileges are inherited by default

when one program executes another, so U-Kuang examines the contents of the

/etc/rc file on the computer being checked to determine which other programs

will be run with super-user privileges. As the simulation continues, all system

daemons that are activated via the /etc/rc file will be simulated. The logging

in (and logging out) of all the users is handled as part of simulating the login

server. Finally, the Unix shutdowri program is simulated.

At each step of the simulation U-Kuang examines the sources of

information that control the behavior of the simulated processes. Each source of

information provides a toehold for a user to acquire additional privileges. The

analysis then applies its knowledge about attacker tricks to determine which

users can exploit these toeholds. The level of detail of the simulation must

13

S

expose the toeholds without including so much information that an exhaustive

analysis is infeasible. Chapter 3 describes the models for expressing information

about the behavior of programs and the tricks attackers can use to exploit

toeholds.

In summary, the approach described in this thesis for detecting

operational security problems is to build a rule based system that embodies

knowledge about the behavior of trusted programs and knowledge about privilege

bootstrapping tricks. The inference engine for the system deduces the set of

privileges that are actually accessible to each user of a particular system. The

accessible privileges can then be compared against the desired access. The

constructive nature of this analysis makes it easy to identify the mistakes that

lead to violations of the access policy.

This knowledge based approach to checking operational security is more

systematic and extensive than the rule-of-thumb approach currently used. This

approach will make it easier for computer users to have both good system

security and good tools for flexible sharing and automated system management.

1.3 Outline of Thesis

This chapter has introduced the general problem of operational security

and pointed out that the focus of this work is on the analysis of online security

problems (as opposed to physical or administrative aspects of operational

security). The advantages of using knowledge based security checkers were

presented, and the basic workings of a Kuang system were described.

The second chapter describes the range of security problems that Kuang S

systems can and cannot check. The particular problems addressed by the

prototype security checker are described in that chapter. For example, Kuang

14

114 11

II 1 6

Systems could check for source integrity problems (e.g., verifying that only

authorized users can modify the source files for programs that will run with

super-user privileges), but the prototype, U-Kuang, does not check for this kind

of operational security problem.

Chapter three presents the abstract model that is used to analyze the

behavior of trusted programs. The model was created by generalizing the Unix

protection system, but as discussed in chapter six, the model appears to be

suitable for analyzing the major features of the TOPS-20 and the VAX/VMS

operating systems. The abstract model highlights the toeholds that allow users
to bootstrap their privileges. The model contains a simulation component that

focuses on the sources of information that control processes, and a component

that focuses on how a user can subvert those sources of information. Knowledge

about trusted programs (e.g., the security kernel, the system daemons, the

command interpreters, etc.) and knowledge about attacker tricks (e.g., how a

user can extend his or her privileges) are embedded in both components of the

model. The model includes high level abstractions like privileges, processes and

files, and low level abstractions like search paths, disk partitions and swap

spaces.

The fourth chapter describes how the model is used by U-Kuang to check

the operational security of Unix systems. The major modules of U-Kuang are

described, and the specific knowledge it has about trusted programs and attacker

tricks is presented.

The experience gained by running U-Kuang is presented in chapter five.

This chapter describes the experiments that lead to this thesis' conclusion that

even security conscious users make mistakes that cause serious security holes.

This chapter describes some tools that would make it easier to keep a Unix

system secure. This chapter is not meant to be a criticism of Unix security. I

believe any complex protection system will have similar problems.

"ILA A "IIN R

Chapter six discusses the limitations and extensions of the rule based

approach to security analysis. An important result presented in this chapter is

that a rule based model can be used to answer general questions about a security

system. For example one question that can be answered is whether conspiracy is

a problem on Unix computers. That is, can two users working together acquire

greater privileges than the union of the privileges they can acquire working

alone? If they can, then the checker must analyze the implications of different

conspiracies of untrusted users. Consider the protection system of bank vaults.

Vaults cannot be opened without conspiracy. Two people must work together to

open the vault. Neither person can achieve access to the vault working alone.

Within U-Kuang's model of Unix, conspiracy cannot lead to privileges that would

not be accessible to a single user.

The last chapter presents the general conclusions of this research: that

operational security problems are serious and that rule based systems are a

promising framework for solving these problems.

1.4 Intellectual Background

This research project applies expert systems technology to solve the longS

standing problem in computer security of ensuring the operational security of a

computer. The existing solutions to this problem were discussed in section 1.1.

This section discusses the intellectual background that helped shape the solution

presented in this thesis.

This research draws on results in the fields of computer security and

artificial intelligence. Work on protection mechanisms and on security models is

used to design a language for describing the behavior of pieces of a protection

system. Early AI research on planning and searching systems is used to develop

the system for analyzing the interactions within a complex protection system.

Later work on knowledge based systems provide the syntax and algorithms for

representing and manipulating knowledge about security systems.

The expert system used in this project is a goal-directed backward-

chaining planning system. The planning system is not novel, it is much like

NOAH [21]. The novel aspect of the planning system is organizing information

about the behavior of the pieces of a protection system around attacker-oriented

goals. The hard part of any rule based system is developing the correct

abstractions for expressing knowledge in the problem domain. Thus the main

intellectual contribution of this thesis is the abstract model of computer security -

systems that is presented in chapter 3.

Within the computer security field this research focuses on analyzing the

behavior of large protection systems. It is assumed that the security system of a

flexible computer system will consist of a large number of trusted programs

outside of the operating system. Further, this project assumes that each piece

behaves according to its specification, whereas much of the current work in

computer security focuses on ensuring that a piece of a security system conforms

to its specification. Given these assumptions, the remaining question is whether

the protection system as a whole has been told to behave in a manner that is

consistent with the users' security requirements.

Finally, this project explores a new meaning for security requirements.

Most work defines the security requirements as a few general statements that

govern information flow and information integrity. This project explores the

advantages of fine grain security requirements that can be specified by the users

of each computer.
0

17

44D

0

1.4.1 Protection Models and Analysis

Models for protection systems enter this research at two levels. First, the S
models provide a way of viewing knowledge about protection systems and thus

they suggest natural ways to represent the rules describing the behavior of pieces

of a protection system. Second, they suggest a language for expressing fine grain

security requirements.

The most general discretionary protection model is the access matrix

described in [13], which generalizes the access control list model and the

capability model [23]. The problem with all discretionary models is the difficulty

of enforcing global policies such as restricting the flow of information between

different users. To deal with this problem, both the access matrix model and the

capability model have been extended to embody information flow requirements

resulting in the model proposed by Bell & LaPadula [1] and the lattice model of

Denning [6]. The Bell & LaPadula model has been further extended to

incorporate information integrity requirements [7]. Unfortunately these extended

models restrict the flexible information sharing mechanisms that were present in

the original models. The approach explored in this thesis attempts to achieve the

flexibility of the original models as well as the global policy features of the

extended models. 0

Very little research has been done on analyzing the configuration of

protection systems. Early work by Harrison, et al. [11] presented a method for

modeling protection systems and showed that deciding whether an attacker could 0

gain access to a particular object is like deciding whether a grammar is

unambiguous. No single procedure can decide the accessibility question for all

protection systems that can be expressed within their model, and there are

protection systems that can emulate Turing machines so for those systems no

decision procedure exists. However, their paper presents one model which does

have a decision procedure. They state that this model is too simple to be of

o

interest, but in fact the attacker-oriented rules used in this research generate an

example of this simple model.

The attacker-oriented rules can be viewed as defining a set of commands

for an abstract protection system. Each command examines the state of an

access matrix to decide if it can be applied, and if so, it adds at most one token

to the access matrix. The commands never add subjects (users) or objects (files)

to the abstract access matrix, even though in a real Unix system applying the

rule might involve creating a new file that takes the place of an existing one.

Since the access matrix cannot grow, a simple counting argument shows that a

decision procedure must exist.

The problem of indirect access to objects has been studied with the take-

grant model for capability systems as in [23]. A variant of the take-grant model,

called the schematic send-receive model, can be analyzed in linear time if

ordinary users cannot create other users with greater privileges [22]. Neither of

these models embody the complexity of protection systems that consist of several -

pieces of trusted software, so the results have limited applications to the real

computer systems considered in this research.

S

1.4.2 Protection Mechanisms

One goal of this research is to describe how to build rule based systems

that can analyze complex protection systems. For that reason knowledge about

existing computer protection systems is relevant. One family of real computers

has tried to meet the needs of the military computing environment and they tend

to have a rich set of protection mechanisms. This includes ADEPT-50 [24], Multics

[18], and most recently the Honeywell SCOMP [121. This family of systems can

enforce some global security requirements such as information flow control, but

they do not address the problem of ensuring a match between the settings of the

security configuration and the detailed security requirements of each site.

19

The classic example of a capability system is Hydra [261. It has a general

model that allows ordinary users to create capabilities to access objects and

capabilities to create capabilities. A system like Unix could be viewed as a

capability system, but it lacks the generality present in Hydra.

The range of commercial computer protection systems studied in this

project has Unix [101 at one end representing simple access control list security,

and VMS (51 at the other representing a complicated cross between list and

capability protection. The VMS model also includes objects with diverse

abstraction such as files and page tables. Due to lack of availability, I ignored

retrofitted security systems like RAOF for IBM systems.

1.4.3 Rule Based Systems

This project draws on research in the area of expert systems to build a

security checker. Expert systems have used several different methods for

representing knowledge and for drawing inferences from that knowledge.

Levesque and Brachman have summarized these different approaches and pointed

out a fundamental tradeoff between the representation of the knowledge base

and the kinds of inferences that can be easily made from the knowledge base

[141. The prototype security checker for Unix demonstrates that simple goal-0

oriented rules and a backward-chaining planning system can analyze an

interesting range of security problems.

Early AI research developed hierarchical planning systems like NOAH

[211 which are general enough to analyze a protection system once the system

has been properly described. More recent AM research on rule based systems has

developed different mechanisms for representing facts and procedures for

reasoning with facts. For example, an early Unix security checker had twelve

rules concerning programs controlled by databases; the final U-Kuang system had

20

just two general rules about how databases can control programs and then it had

several facts about what programs are controlled by which databases. Separating

facts from the techniques for using those facts lead to a simpler knowledge base

that was easier to understand and extend. The information structuring features

of U-Kuang's rule based system were selected from several modern expert system

shells (IKE [19], KRL [21, and KEE [8]).

I.

5 21

22

S

Chapter Two

Scope of the Solution

Operational security covers a wide range of areas so it is important to

define the specific goals and problem areas addressed in this research. This

chapter presents the problem areas that U-Kuang addresses by describing the

general areas, and within those areas, which problems are handled by U-Kuang.

The first section lists the kinds of operational security holes that Kuang systems

could find and the particular problems that U-Kuang finds. The second section

presents a functional specification of Kuang systems in general and U-Kuang

specifically. The third section describes different modes of operations for security

checkers and the particular mode of operation for U-Kuang. The last section

discusses policy specification languages and presents the simple language used by

U-Kuang.

2.1 Operational Security Problems

Operational security problems are quite different from the problems that

arise from design or implementation mistakes. Operational problems arise from

the incorrect operation of the computer. They can exist even if the -if,'iign and

implementation have been certified to conform to each each and to some global

model of the user's security requirements. This study of operational security

problems assumes that the trusted programs behave as expected. The question it

asks is whether the security system has been configured to enforce the desired

security policy. That is, are there unexpected interactions between the pieces of

the security system that allow users to perform undesired operations?

22

'fktA

This section describes different kinds of operational security problems and

identifies the ones that are handled by the prototype security checker. In general

a Kuang system can check for any security hole that involves changing a file or • -

table on the computer system. A list of operational security problems that do

not fit this paradigm are presented in figure 2-1. The kinds of problems that do

fit this paradigm are listed in figure 2-2. The extent to which U-Kuang checks

for these problems is discussed below.

" Wire tapping. Communication channels are secure.

" Unlocked machine. Physical access to the system is well controlled.

" Bad passwords. The users have chosen good passwords.

* Authentication Integrity. The databases and programs that are used
to authenticate users have not been tampered with.

* Installation Integrity. The people and data sources that update the
system are trusted.

Figure 2-1: Unhandled Operational Security Problems

0

Of the problems listed in figure 2-2, U-Kuang checks for indirect access,

privilege bootstrapping, and resolution integrity. It handles a limited form of

authentication integrity. It can report on all the users who could modify the

authentication system, but it cannot tell if the system has been modified. It does 0

not check for source integrity problems in general, but it does che k one special

case where a database that controls the mail delivery program is converted from

text to binary form. Object integrity and installation integrity are not checked,

and in general I believe it is hard for Kuang systems to check for these kinds of

operationl problems because they require knowledge that is hard to represent in

the abstract model presented in Chapter 3.

23

" Indirect Access. Given the operating system's rule for changing access
controls, be sure that only desired users can access an object.

" Privilege Bootstrapping. Prevent users from acquiring additional
privileges by changing the controlling databases of trusted programs.

" Resolution Integrity. When a program is invoked make sure the
desired executable object is used. This category includes trojan horses
and search path attacks.

" Object Integrity. The executable image of a program corresponds to
the correct source code.

" Source Integrity. Only authorized persons can change the source code
or the object libraries that form trusted programs.

Figure 2-2: Operational Security Problems

It is worth emphasizing that this security analysis system does niot and

cannot find software bugs. For example, version 4.2 of Berkeley Unix had a bug

in the implementation of shared code segments that made it possible for anyone

to acquire super-user privileges. The sccurity checker could not find this

problem. One could build a rule based system that incorporates knowledge

about software bugs but it would not be Kuang system since it would not use the

abstract model presented in Chapter 3.

2.2 Functional Specification of U-Kuang

The simplest Kuang system can be viewed as a boolean function of two

arguments. The function examines a Security Configuration and an Access

Policy Specification and returns True if the security configuration is consistent

with the access policy. It returns True if and only if the computer is configured

to allow all the specified access and disallow all the unspecified access.

24

A computer's security configuration is the sum of all the information that

controls access to information. This includes the file and directory protection

modes which are used by the kernel and all the system tables and configuration

files examined by trusted programs. For example, the login program runs with

super-user privileges, so the databases it reads, like the password file and the

directory containing the password file, are part of the security configuration.

The contents of each user's login initialization file are part of the security

configuration, since those commands are automatically executed with the

privileges of that user.

U-Kuang has a very simple policy specification language. Section 2.4

discusses the general issues. The goal of the simple language is to allow a system

administrator to specify the set of privileges (i.e., group-ids and user-ids) that can

be accessed by each user. The specification is exhaustive; any access not

explicitly granted should be inaccessible.

This simple language does not address the problem of specifying which 0

privileges should be necessary to access each file. A more general language would

allow an administrator to specify which users are allowed access to each file or

group of files. The simple language lets an administrator specify the distribution

of privileges among the users, but there is no way to make sure that files

containing sensitive information are protected by the correct privileges.

The primary inputs to the U-Kuang program are the security]

configuration and the desired access policy for the computer being analyzed.

These inputs are different for each computer analyzed. The facts and rules that

describe the privileged programs running on the computer (including the

operating system) form a secondary input to U-Kuang. The secondary input

would only change when the security model for Unix was changed or refined.

0S

25

e 6

The output of U-Kuang is a list of plans that describe how the security

configuration allows users to violate the access policy, If the list is empty, then

the site is secure against the attacks that U-Kuang detects. To the extent that

U-Kuang has an accurate and complete model of the trusted programs that run

on Unix machines, an empty list means that the site does not have any

operational security holes. Only (and all of) the specified privileges are accessible

to the specified users.

2.3 Modes of Operation

A Kuang system could be used as a stand-alone auditing program, or it

could be integrated into the operating system. U-Kuang is a stand-alone security

checker. It is a program that can be run periodically to detect human errors that

lead to operational security holes. U-Kuang takes less than a minute to run, so it

could be performed whenever a privileged user makes changes to system tables.

The experiments performed for this research involved running U-Kuang weekly.4

The auditing program does not prevent operational security holes; it just

detects them. To get better security, a IKuang system could be integrated into

the security kernel. Changes to the security configuration would be grouped into

atomic transactions that are reviewed by the Kuang system and only transactions

that leave the system in an acceptable state would be applied. This approach

would only be feasible if the rule based system was fast enough.

4 On one undergraduate machine the program was run every Friday morning so holes could be
fixed before the weekend. Eventually it was discovered that system crackers were running the
program every Thursday evening.

26

% % %

2.4 Policy Specification Languages

The basic question answered by a Kuang system is whether a particular

site is in a 'safe' state. The characteristics of a safe state are determined on a

per site basis, so there must be a way to specify such a state. Basically, a safe

state is one in which all the desired accesses to information are allowed, while all

the undesired accesses are disallowed. The specification can be viewed ns a

statement of the policies for acceptable accesses. This section discusses policy

languages and describes the language used by U-Ku ang.

The policy specification can be viewed as a virtual access matrix. Like a

conventional access control matrix 1131, the matrix that has a row for each user

and a column for each protected iesource (e.g., files, mail queues, networks, and

devices). Each cell of the matrix defines the set of operations that the user can

perform on the resource. This access matrix is virtual in the sense that it does

not include details about how each resource is named nor does it list the related

operations that are required to perform a specified operation. For example, on

Unix if a user should have read access to a file, he must also have search

access to the directory containing the file. These details are left out of the

virtual access matrix.

When a Kuang system compares a policy to a security configuration there

are several possible outcomes. fhe policy itself might be inconsistent. In that

case the checker should describe how the policy statements contradict themselves.

A checker that did not generate a constructive statement of the inconsistency

would not help the user identify the source of the inconsistency, Recall that

security checkers are motivated by the desire to help users deal with the

complexity of protection systems. Another outcome could be that the policy is

not realizable on the given operating system. In that case, the Kuang system

should point out rules in the protection model that contradict statements in theR.

A

27

NI.

WI' K

policy. For example, if the policy says that some directory owned by user alice

should not be writable by alice, the checker should point out that on Unix the

owner of a directory can always gain write access because the owner can change

the access controls on the directory. Finally, a the system must say whether the

site is configured to meet the policy and if not, it should describe a sequence of

actions that a user could perform to violate the policy specification. U-Kuang

only performs this last function.

There is a trade-off between the expressiveness of the policy language and

the difficulty of detecting inconsistencies (both within a policy specification and

between a specification and a security configuration). The focus of this research

is security analysis, so U-Kuang's policy specification was chosen to be very

simple. The specification is a table very much like the table in the Unix file

/etc/groups. The table lists for each privilege (user-ids and group-ids) the

users who are allowed direct or indirect access to that privilege. For example, a

user who has access to super-user privileges can indirectly access all user-ids or

group-ids and that must be explicitly specified. 5

A great deal of research is possible in the area of policy specification

languages. For example, it would be interesting to formalize the specification

languages of different systems and then compare them in terms of expressiveness

or completeness. Another project would be to find out what policies are required

to solve security problems in different environments (schools, corporations,

computer centers). Policies about default protections are particularly interesting

because they express constraints on objects which do not yet exist. It is not clear

how a rule based system could check a policy like "all files created by the

foobar program in this directory should only be readable by bob." Operating

systems are unlikely to help users implement detailed policies like that one. At

least a security checking system could detect any existing violations of the policy.

5 1n practice the policy table is generated by macros from a slightly more convenient language. •

28

JV illIV %_0

iS
The only protected resources considered in U-Kuang's policy specification

language are Unix user-ids and group-ids. The specification identifies the users

who should have access to each privilege6 . In this simple language files are not

considered protected resources. The set of privileges required to access each file

is not part of the specification. Only the distribution of privileges to users is

specified.

U-Kuang's policy specification is called a Privilege Access Table. The

BNF for this table is given in figure 2-3. Terminal symbols are underlined. The

table has a row for each privilege. A Unix system can have a user and group id

with the same name, so the symbols u. and g. are used to distinguish them.

Each row lists the users who should be able to directly or indirectly acquire that

privilege. This specification is exhaustive. Any access that is not explicitly

granted is forbidden. Further, all user and group privileges must be listed. It is

a violation of the policy for the computer to have privileges that are not listed in

the table.

pol-spec priv-spec I priv-spec pol-spec
priv-spec priv : usernames
usernames username I usernames _ usernames
priv U. username I G groupname
username string
groupname string

Figure 2-3: BNF for the Privilege Access Table

A sample specification is given in figure 2-4. Notice that there is a user-id

and a group-id named daemon as well as a user named daemon. The super-user,

BA privilege is any ticket checked by the operating system to determine whether to grant access
to a protected resource.

2g

root, has access to all privileges. The users alex and alice can use each

others user-ids. For example, their entries in the password file might state that

they have the same user-id even though they have different home directories.

Unix does not enforce a one-to-one correspondence between users and user-ids.

The user bob has allowed tom to use his account. For example, bob might have

put tor in his . rhosts file which allows tom to log into bob's account without

supplying a password. The details of how each form of access is grant are not

important. The privilege access table just specifies the set of user who can

acquire each privilege.

user.daemon : daemon, root
user.alice : alice, alex, root
user.alex : alex, alice, root
user.bob :bob, torn, root
user.tom : tom, root
group.guest : alex, alice, bob, daemon, tom, root
group.staff : alex, alice, root
group.daemon daemon, root

Figure 2-4: Sample Policy Specification

30

1%M SO

Chapter Three

An Abstract Security Model

The hard part of designing any rule based system is choosing the

vocabulary and structures that will be used to represent facts in the problem

domain. The goal is to pick a simple representation that facilitates answering

the desired questions. In the case of a Kuang system, the important question is

which users can indirectly access each privilege (e.g., user-id or group-id). To

answer this question the system must create an abstract model of a computer's

security system that clearly identifies the interactions each user could exploit to S

achieve greater privileges.

The abstract model is the major intellectual contribution of this thesis.
S

Once the model is understood, it is easy to see how operational security problems

can be checked systematically. The model identifies the essential causes of these

ploblems and describes how the analysis problem can be decomposed into simple

steps.

The model was developed as a generalization of the Unix protection

system, but it can be applied to other systems. Section 3.2 describes the

relationship between concepts in the abstract model and concepts in both the

Unix and VMS operating systems. By presenting the model explicitly, this

chapter makes it easier to decide whether this approach to security analysis can

be applied to other systems. To the extent that the model can represent the

significant features of a system, this work can be applied directly.

The key idea of this model is to focus on the sources of information that

31

K A P'l Pr6

influence the behavior of a process (a running program). If an attacker can

change one of the sources of information, then the attacker can gain control of

the process and thus acquire the privileges avallable to the process. This idea

unifies the tricks that attackers use to extend their privileges. Every trick is an

example of modifying a file, table, or database that crucially influences the

behavior of some process. For example, adding commands to a user's login

initialization file can be viewed as modifying one of the sources of controlling

information for the process that executes that user's command interpreter.

The first section of this chapter describes how the analysis problem can be

decomposed into three simple steps. That section describes the information

passed between each step. Sections two, three, and four describe those three

steps in greater deal and present the models that are used to represent knowledge

about trusted programs and attacker tricks. The chapter ends with a summary

of the models.

3.1 Decomposition of the Analysis Problem

The general problem handled by a Kuang system is checking the

configuration of a security system to ensure that the desired access policy is being

enforced. The system must analyze the configuration to produce a table called

the Privilege Accessa Table (PAT) that shows which users can indirectly access

each privilege. This table has the same format as the one that specifies the

access policy (see section 2.4) so it is easy to check the security.

The PAT is computed in three steps. The first step uses knowledge about

trusted programs and iacts about the configuration of the system being analyzed

to deduce the set of files and tables that allow an attacker to directly acquireIr

each privilege. That is, the first step examines the behavior of the trusted

programs that will run on the computer being analyzed to produce a list of

32

toeholds for an attacker. The second step applies knowledge of attacker tricks to

deduce all the techniques that could be used to directly exploit these toeholds.

The last step performs a transitive closure operation to identify all the indirect

relationships. The PAT is extracted from the matrix of indirect relationships.

This decomposition is expressed in figure 3-1.

Analysis Steps Examples

Model of <--- Rules, Facts
Trusted Programs Facts - /etc/init forks shell to

execute commands in /etc/rc0

ITable of Privilege Controlling operations
IPrivilege u.root: {modifyC/etc/rc) ...

IControlling g.staff: {modify(/etc/group) ...

IOperations u.toM: {Modify(/usr/tom/.login) ..I

V
Model of <--- Rules, Facts

Attacker Tricks Facts - /etc/rc writable by {u.root}
- /etc wrritable by {u.root, g.staff}

IOp. Grant Matrix 1 2 345
IOperation acquire(u.root) 11 T T T
IGrant acquire~g.staff) 21 T T
IMatrix acquire~u.tom) 31 T T

I odifyC/etc/rc) 41 T T
modifyC/etc) 51 T T

V
Transitive <--- Rules, Facts
Closure Facts - user ton has {u.tom, g.guest}

Privilege Access Table
IPrivilege u.root: {rotom I
IAccess g.staff: {root, ton
ITable u.tom: { root, tom

V

Figure 3-1: Steps in Security Analysis

33

0" '11 IF 1 *1*** V "

The first two steps use different knowledge bases and they have different

models for representing facts and rules. The details of these models are

explained in sections 3.2 and 3.3. To highlight the purpose and function of each

step the remainder of this section describes the interfaces between the steps. For

U-Kuang, additional information is passed between the steps because it answers a

more detailed question. Not only does it need to figure out which users can

indirectly access each privilege, it must be able to describe how each privilege

could be acquired. The descriptions make it easier to identify the cause of an

operational security problem, but they do not add any new complications to the

analysis process.

3.1.1 Privilege Controlling Operations
0

A key assumption of this research is that operational security holes are

exploited by modifying files, tables, or other information that controls a process.

This assumption defines the kind of security problems that are considered in this

thesis. For example, one problem which is not considered is the problem of

leaving the computer in an unlocked room. An attacker with physical access to

the machine can often acquire privileges by using the console terminal to

interrupt the normal power-up sequence of the machine. This sort of problem

does not fit the key assumption. However, the problem of an attacker modifying

the files or tables that specify the commands that will be executed when the

machine reboots does fit the key assumption. Those commands are often

executed with super-user privileges (i.e., on Unix these are a user-id privilege

called u.root and a group-id privilege called g.wheel), and by changing these

commands an attacker could create new accounts with any desired privileges.

The key assumption suggests that one important concept is the notion of a

Controlling-File (CF). A CF for a process is any file, directory, table, program,

etc. that can be manipulated to allow an attacker to acquire the privileges _

34 1%

1,
- ,~ . i

available to that process. A CF is a generalization that encompasses all the

sources of information that can influence the behavior of a process. The concept

of a Controlling-Operation (Co) for a process specifies both the CF and the kind

of operation on the CF which is necessary to manipulate the process. For

example, the Unix login program runs with super-user privileges and it is

controlled by information in the password file, /etc/passwd. The operation

write (/etc/passwd) is a Co for the login process and thus an attacker who

can perform that operation can acquire super-user privileges.

In general there are read and modify COs. A specific operating system

might have different forms of these operations like append or delete, and the

available operations might depend on the type of controlling-file. The operations

on directories could be different than the operations on files. U-Kuang models

Unix CO's with three operations: read(cf), write (cf), and replace (cf).

The read operation has the conventional meaning for files. For directories it

means that the attacker has the ability to search the directory for a given file

name. The write operation means that the contents of the CF can be modified

without changing the ownership of the file or directory. The ownership can be

changed as part of a replace operation. For example, a attacker can perform

the replace (cf) operation by deleting the original file and creating a new one

to take its place. This trick usually changes both the ownership and contents of

the CF.

The purpose of the first step in the analysis is to build a table of all the S

COs that grant access to each privilege. The table of Privilege Controlling

Operations (PCO) is constructed using knowledge about the behavior of trusted

programs which has been compiled into the security checker and facts about the

contents of command files and tables which are read from the machine being

analyzed. Basically, the execution of all the trusted programs is simulated and as

these programs reference controlling information, Cos are recorded for all the

privileges available to the process. A sample PCO table is shown in figure 3-2.

35

P .1 d,. t %

A table of PCOs has a row for each privilege. Each row lists the set of COs

that allow and attacker to control some process that runs with the given

privilege. In figure 3-2, access to the super-user privilege, u. root 7, is controlled

by the operations of writing the password file or reading the kernel memory (via

the special device /dev/kmem). The password file is a controlling file for the

login program, which runs in a process that has super-user privileges. The kernel

memory is a controlling-file for all processes. In particular, it includes the

terminal buffers for all users, so read access allows an attacker to watch other

users type their passwords when they login.

u.root: (modify(/etc/passwd), read(/dev/kmem)...
g.staff: {modify(/etc/group)...I
u.tom: {modfy(/usr/tom/.login) . .

Figure 3-2: Sample Table of Privilege Controlling Operations

3.1.2 Operation Grant Matrix

The first step of the analysis process produced a list of the operations that

would allow an attacker to directly acquire each privilege. For example, the first

step used its knowledge about how a Unix system boots to deduce that a process

with super-user privileges executes a program called /etc/init so it would add

an entry to the table of privilege controlling operations stating that

modify (/etc/init) grants access to the super-user privilege, u. root. The S

second step of the analysis applies its knowledge of attacker tricks to find all the .

ways that an attacker could perform controlling operations.

7Unix has user and group privileges. To distinguish a user privilege named daemon from a
group privilege of the same name, the former is written as u.daemon while the later is written
g. daemon.

36

0 %INlr, ,'_O %.

S

The PCO t,,ble can be viewed as a list of goals that would help an attacker

increase his privileges. The second step builds a list of subgoals that can be used

to achieve those goals, and recursively, a list of sub-subgoals to achieve the

subgoals, etc. The details of this inference process are described in section 3.3,

while a description of the output of the process is described below.

The output of the second step is a boolean matrix that describes which

goals are directly granted by each goal. The goals can be represented as

operations that an attacker can perform on CFs or privileges. That is, the goals

are modify(cf), read(cf), and acquire(priv). The first two goals are

exactly the same as the controlling operations that were introduced earlier. The

third goal means that the attacker can run an arbitrary program in a process

that has access to the priv privtiege.

The notation was chosen to encourage the reader to think of

acquire (priv) as the ability to perform the acquire operation on an object

of type privilege. This perspective unifies privileges and CFs into a single 0

framework of performing operations on objects. Knowledge about the

relationships between privileges and files can be expressed in the same terms as

knowledge about relationships between COs. For example, one relationship

between COs that exists in Unix is that for all files, f, in the directory, d, the

operation modify(d) grants the operation modify(f). A similar relationship

between privileges is that for each user-id privilege, u, that is a member of the

group-id privilege, g, the operation acquire (u) grants acquire (g).

In terms of these general operations, the purpose of the second step of

analysis is to build a boolean matrix that describes what other operations arc

directly granted by each operation. The Operation Grant Matrix (OGM) defines

a relation between operations that is reflexive (an operation directly grants itself),

but not necessarily symmetric (operation ol directly grants 02 does not imply

37*, -

that o2 directly grants 0l), nor transitive (ol directly grants o2 and o2 directly

grants o3 does not imply that ol directly grants o3). The OGM only defines

direct granting relationships between operations. The third step computes the 0

transitive closure of the OGM to produce the indirect relationships.

A sample OGM is shown in figure 3-3. The OGM is always square, so the

labels for the ith column is the same as the label of the ith row. The rows and

columns are numbered to facilitate reading labels. The symbol, T, is placed in

the cell at the intersection of a row and a column if the row operation directly

grants the column operation. An empty cell means that there is not a direct

grant relationship between the operations. The first row of the OGM expresses

the fact that the super-user privilege, u.root, directly grants itself,

acquire (u. root), and directly grants the modify operation for all CFs

(/etc/rc and /etc).8 The last cell of the second row expresses the fact that

the staff group-id privilege has write access to the /etc directory, so it grants

the modify(/etc) operation. The third row indicates that anyone who can

acquire the user-id privilege, tor, can acquire the group-id privilege, staff.

The transitive closure operation will deduce that acquire (u.tom) indirectly

grants acquire (u. root).

The information in the OGM could also be expressed by a directed graph.

The nodes would be the operations. An edge would lead from one node to

another if the first operation granted the second. In fact, U-Kuang used a graph

to represent the OGM. Similarly the table of PCOs could be viewed as a graph

showing which COs grant the acquire operation for each privilege. Thus both

the input and output of the second step of analysis can be viewed as a graph

describing the direct grant relationship between operations. The second step uses

8 It is also true that the super-user privilege directly grants access to all other privileges by

using the /bin/su command, but that knowledge is not included in this simple example.

38

%% %i

12 3 4 5

acquireCu.root) 11 T T T

acquire(g.staff) 21 T T
acquire(u.tom) 31 T T
modify(/etc/rc) 41 T T
modify(/etc) 51 T T

Figure 3-3: Sample Operation Grant Matrix

its knowledge of attacker tricks to expand the direct granting relationships that 0

were deduced in the first step.

3.1.3 Privilege Access Table

The goal of a Kuang system is to compare the operations that each user

can directly or indirectly perform against a specified access policy. In the case of

U-Kuang the only operations that are specified are operations that acquire

privileges. The output of the third and final step of the analysis is a Privilege

Acces8 Table (PAT), which has the same format as the table specifying the desired

access policy. The table has a row for each privilege, and each row lists the users

that should be able to access that privilege. Any access that is not explicitly

permitted should be forbidden (see section 2.4 for details).

A sample PAT is shown in figure 3-4. There are two user-id privileges,

u. root and u. tom, and one group-id privilege, g. staff. The two users, root

and tom, have access to all three privileges. It is no surprise that the super-user,

root, has access to all privileges. However, the system deduced that toom could

acquire u. root, so he too can access all three privileges. The PAT does not "V

describe the plan by which tom can acquire super-user privileges. Ir. order to

build plans, each step of the analysis needs to keep track of extra information,

but the nature of the analysis is not changed. 'V

3-

PV ~ .

u.root: { root, tom }
g.staff: { root, tom }
u.toom: { root, tom Y

Figure 3-4: Sample Privilege Access Table

The third step computes the transitive closure of the OGM and extracts

just the information that deals with privileges. The computed matrix defines the

indirectly grants relationship between privileges. The desired result is a table 9

that defines the set of users who can acquire each privilege. To compute that

result, the third step needs to consult facts about which privileges are initially

accessible to each user. These facts come from the computer's authorization

database, which on Unix is kept in the files /etc/passwd and /etc/group.

3.2 Model for Trusted Programs

The model of trusted programs defines the vocabulary and structures that

are used to express facts and rules about the behavior of programs. The focus of

the model is on the sources of information that an attacker could manipulate to

gain control of the processes that execute these programs. By controlling a

process, an attacker can acquire all the privileges available to that process. This

section describes how knowledge about programs is represented and how that

knowledge is used to deduce the set of operations that directly grant access to 9

each privilege.

The algorithm for making these deductions is similar to an algorithm for

simulating the execution of the programs. The algorithm uses compiled-in

knowledge about the behavior of programs (e.g., the fact that the nIt program"

executes commands in the file /etc/rc) and facts about the computer being
S

40

sa;. E

analyzed (i.e., list of commands found in that computer's /etc/rc file) to

deduce the new processes and programs that will run on the computer. This is

not a true simulation since the order of execution does not need to be

maintained.

At each step of the simulation, a small set of rules are used to generate a

list of COs that could change the outcome of that step. These COs are added to

the set of Cos for all the privileges currently available to the process. These sets

form the PCO table.

To motivate the model which is explained in section 3.2.1, table 3-1 lists

the kinds of facts that must be represented by the model. The first fact in the

table describes how Unix systems start execution. The important information is

that the future action of a process with super-user privileges is determined by

information found in a file named /etc/init. The second fact provides an

explicit description of the important actions taken by the init program. In

general programs that are compiled into machine instructions must be simulated

using compiled-in facts about their behavior. Programs which are written as a

series of user-level commands (e.g., /etc/rc) can be parsed directly by U-

Kuang, so their behavior does not need to be represented by compiled-in facts.

The third fact is about the privileges available to a process. When a new

process is created, it inherits the privileges of its parent. Combining this fact

with the first two, the system can deduce that all the commands mentioned in •

/etc/rc will be executed with super-user privileges.

The fourth fact describes how one program, sh, converts a program name

into the full name of the file that contains the instructions for the program. The S

details of how program names are resolved into file names are very important to

the operational security of a computer. In particular, the fifth fact states that

41

V _0

0

1. When Unix boots it create a process with super-user privileges that

executes the program in /etc/lnit.
0

2. The program /etc/init creates a new process running the program
/bin/sh to execute commands in the file /etc/rc.

3. By default, a new process has the same privileges as its parent
process.

4. The program /bln/sh uses a search path to resolve command names

into executable files.

5. Any directory searched to find a file that provides instructions for a
process is a CF for that process.

6. Any file that provides instructions for a process is a CF for that
process.

Table 3-1: Sample Knowledge About Trusted Programs

any directory search to find a program is a CF for the process. If an attacker can

modify that directory, he can substitute his own program for the intended one S

and thus can acquire all the privileges available to the process. Similarly, the

sixth fact says that if an attacker can modify the file that contains the

instructions, then he can gain control of the process.

3.2.1 Formal Model for Trusted Programs

The key feature of the model for trusted programs is the process

abstraction. This abstraction is similar to the conventional operating system

notion of a process. It represents the instantaneous state of a program. As the

security checker simulates the behavior of trusted programs it creates process

objects and modifies the state of these objects to model the behavior of the -

corresponding real processes.

A process object has three state components. The behavior of each

42

I% . .1.§

0

Process
" Privilege state - List of privileges available to the process.
" Naming state - Context for resolving names.
" Control state - Current actions plus list of remaining action.

Figure 3-5: Attributes of a Process Object

process is specified by a control state. The privileges available to the process are

specified by a privilege state, and the naming environment used to convert names

into disk addresses is specified by the naming state. As the analysis proceeds, S

the state of each process object is changed according to the list of actions

specified in the control state. New processes are created and old processes are

simulated to completion. The analysis ends when all processes have been

simulated. To define the model precisely, the concepts used to define the state of

a process are defined below. Figure 3-6 relates these concepts to those found in

the Unix operating system. Figure 3-7 illustrates the same correspondence for

the VMS operating system.

A Privilege is any ticket which grants the ability to perform operations on

protected resources. For example, the only privileges on Unix systems are user-

ids and group-ids. These grant access to all the files, directories and devices that

exist in Unix. The VMS system has group and user ids but it also has 'privilege

bits' which allow a user to perform operations like submitting batch jobs, and

change the page-table (virtual memory map) for a process. All of these are S

privileges. The privilege state of a process is a list of privileges that a program

could use.

The model does not specify the restriction on how the privilege state can

change. For example, on Unix only a process with super-user privileges can

change its privilege state independently from changing the program that it is

43

FiII F 9 - *'Iq*I.p P- yl).A

Unix Model for Trusted Prograa
Process <privilege state, naming state, control state>

user-ids Privileges
group-ids

current-directory Naming state
search-paths
shell-variables

programs Scripts = lists of actions
shell-scripts
control-tables

create-process Actions
resolve-file-nase
execute-command-f ile
execute-program
change-privileges
change-directory
change-shell-variable5
copy-file

Figure 3-6: Unix and the Trusted Program Model

executing. The model does not enforce this restriction. This detail about the

behavior of Unix is expressed by the actions specified by programs. The model

must be able to determine the privilege state of a process at each step, but it

does not need include information about forbidden changes to the privilege state.

The Naming state is a table that describes how file and program names

can be resolved into disk addresses. This abstraction covers concepts like the

current directory of a process, the list of directories search to find a file, and

logical names (e.g., $HOME or SYS$SRC). When a process takes an action that

must resolve a file or program name, the current naming state of the process is

examined to determine the outcome.

The Control State of a process is a current action plus a list of remaining

actions call the remaining script for the process. Each step of the simulation

44

7 1 1.

A- N.

VMS Model for Trusted Program
Process <privilege state, naming state, control state>
Batch-job

user-names Privileges

group-names
privilege-bits

current-directory Naming state
search-paths

logical-names

programs Scripts = lists of actions
command-files
control-tables

create-process Actions

resolve-file-name
execute-command-file
execute-program
set-privileges
change-directory

define-logical-name

copy-file

Figure 3-7: VMS and the Trusted Program Model

performs the current action, and then extracts the next action from the head of

the remaining script. A process is fully analyzed when its remaining script is

empty.

The possible actions are listed in figure 3-8. They define the activities of a

process that could lead to operational security holes. The first two actions allow

a process to change its privilege and naming state. Again, the model does not

incorporate details about which kinds of changes are allowed. The compiled-in

actions or the actions parsed from files express these restrictions. The third

action describes the creation of new processes. It includes the restriction that the •

initial privilege and naming states are the inherited from the parent process. If

that state needs to change, the change must be modeled by explicit actions. For

example, the first action in the script for a set-id program on Unix, or a VMS

4.

45

pfh.

program installed with privileges, must be an action that changes the privilege

state.

1. Change the privilege state according to a constant in the action.

2. Change the naming state according to a constant in the action.

3. Create a new process with the same privilege state and naming state
as this process, but a new instruction state as specified by a constant
in the action.

4. Append or insert scripts to the list of remaining scripts. The scripts
are specified by either 1) a constant in the action, or 2) a list of
scripts parsed from a specified controlling-file.

5. Copy one controlling-file to another.

Figure 3-8: Possible Actions for a Process

The fourth action in figure 3-8 describeg9 how a process can add actions to

its script of remaining actions. The new actions can be specified by a constant or

they can be read from a controlling-file (e.g., program or shell-script). This

feature gives the model general Turing capabilities and the possibility of infinite

loops, but in practice, trusted programs have a straight-line behavior in terms of

actions that are relevant to operational security holes.

3.2.2 Representing Facts About Programs

This section briefly describes how the model can be used to represent the

knowledge about trusted programs that were presented in table 3-1. Factual

knowledge is represented by assigning value to the attributes associated with

objects. For example, there will be an object that represents the file

fetc/Init, and it will have a field that holds the list of privileges that grant

46

direct write access to that file. Each privilege is itself represented by an object.

The facts in knowledge base can be thought of as pre-initialized objects. Facts

that are deduced are recorded by creating new objects or by filling in the

attributes of existing objects. Other knowledge describes how to compute the

values of attributes. This knowledge is represented by rules. The antecedent of

each rule selects one or more objects with particular properties, and the

consequent fills in the value of some attribute. To avoid including syntax details

the representations are described in english.

The first fact in table 3-1 is that Unix systems boot by running the

program /etc/init in a process with super-user privileges. This is represented

by a compiled-in process object that starts off the simulation. The privilege state

includes the super-user privileges, the naming state is empty, and the control 0

state specifies a single action which is to read a script from /etc/InIt and add

it to the list of remaining actions.

The script for /etc/init is expressed as a compile-in fact. This fact is

stored in the knowledge base as a property of the oib~ ct that represents the file

/etc/init.

The third fact states that new processes inherit th- privilege and naming

state of the parent process. This fact is represented by the rules which create

new process objects. There is a general operation to create new process objects

in the knowledge base given the three components of its state, and each rule that

calls this operation passes it the privilege and naming state of the parent process.

The next fact states that the command interpreter, /bln/sh, uses a

search path to resolve the names of programs into the files that contain the code

for those programs. This fact is represented by an attribute in the naming state

of a process. The routine that reads and parses commands from files checks this

47

~~~~' - l. C



flag to build the appropriate scripts. The resulting scripts identify both the

program name and the label for the attribute that holds the search path used to

resolve the program name.

The fifth fact states that any directory searched to find a file that

provides new actions for a process is a controlling-file for the process. This fact

is expressed by a rule that examines the current action of each process and if

that action involves reading a script from a file, then the appropriate directories

of the search path (if any) are added to the table of process controlling

operations.

The last fact states that the file that provides a new script is also a CF for

the process. This fact is also expressed by a rule that examines each action taken

by a process.

3.3 Model for Attacker Tricks

The first step of the security analysis produces a table of privilege

controlling operations. If an attacker can perform one of these operations, he

can gain control of a process that is running with the specified privilege. An

alternative view of the P00 is that for each privilege, p, the P00 specifies the CF

operations that directly grant acquire (p). Taking this viewpoint, the P00

table can be used to fill in the initial rows and column of the operation grant

matrix.

The second step in the analysis uses knowledge of attacker tricks and facts

about the computer being analyzed to add additional rows to the 0GM and to fill

in additional granting relations between the operations. The entries in the P00

can be viewed as a list of goals that an attacker would want to achieve, and the

purpose of the second step is to find all the sub-goals that would help achieve the

48

owl



initial goals. The analysis is recursively applied to the sub-goals, and it stops

when there are no new goals. For example, the PCO table may say that

modify(/etc/int) grants access to the u.root privilege. The attacker

model would be used to find all other operations that grant that operation. For

example, one attacker trick states that modify access to a directory grants

modify access to all the files in that directory, so the modify (/etc) operation

would be added to the OGM. The analysis would then look for ways to achieve

this new operation.

The model for attacker tricks defines the vocabulary and relationships

that are used to express attacker tricks. The examples in table 3-2 will clarify

the kinds of knowledge that this model must be able to represent. The first two

facts are information about specific files that exist on a specific machine. The

analysis program must be able to read this information from the machine's file R
system. Similarly, the third fact describes a property of the g. staff privilege

on this particular machine.

1. The file /etc/rc is directly writable using the u. root privilege. S

2. The directory /etc is directly writable using the u. root or g. staff
privilege.

3. The user-id privileges, u. tom and u. alice, have direct access to the S

group-id privilege, g. staff.

4. Any privilege that has direct write access to a CF grants modify access
to that CF.

5. Modify access to a directory grants modify access to all the CFs in
that directory.

Table 3-2: Sample Facts for The Model of Attacker Tricks

The key feature of the model for attacker tricks is the controlling-file

49



abstraction. The CFs objects have attributes that represent the basic access

control information. For example, a file object would have attributes listing the

privileges that grant direct read and write access to that file. Thus the attacker
model uses a general access control list to represent the security mechanisms of

the computer being analyzed. Unlike Unix, the model does not restrict the

number or type of privileges that can be listed in these CF attributes. The Unix

protection system restricts the list of writers to include at most one user-id

privilege, one group-id privilege, and one special group-id privilege called other

or world. The model only needs to know which privilege directly grant the

write operation for each file. The detailed restrictions are not modeled.

The fourth fact is a rule about how an attacker can use facts about the

direct writers of a file. It states that for each privilege, p, in the list of writers of

a file f, the acquire (p) operation grants the modify (f) operation. The last

fact is similar. It says that for each file, f, in directory d, the operation

modify d) grants modify(f).

From these facts, the analysis can deduce that acquire (g.staff)

grants modify(/etc) which in turns grants modify(/ec/init). The fact

that modify(/etc/nit) grants acquire(u.root) was deduced using the

model of trusted programs.

3.3.1 Formal Model for Attacker Tricks

These examples point out that the model of attacker tricks has two basic

objects: privileges and controlling-files. A Kuang system can read and record

properties of these objects. For example, file objects will have attributes like the

list of privileges that grant write and read access and a reference to one or more

directories that contain this file. Figure 3-9 lists the general properties of these

two objects. For a particular system like Unix there will be multiple types of CFs %

50

W4



and privileges. The attributes for these specific objects will also vary from one

operating system to another.

* Controlling-Files
writers: list of privileges
readers. list of privileges
parent-directory: control ling-file

" Privileges $
members: list of privileges

Figure 3-9: Object Properties in the Model of Attacker Tricks

The two general operations on CFs are modif y and read. Usually, the

read operation does not help an attacker gain control of a process, but it mightV

be used to find out security relevant information like the passwords for users or

files. The one general operation on privileges is acquire. A specific operating

system may have more than one instance of these general operations. For

example, Unix has two kinds of modify operations. The replace operation

allows changing the ownership of the file (e.g., this might happen if the file was

deleted and a new file was created to replace it). The write operation does not

allow the ownership to change, so if the file is deleted the file that takes it place

must have the same owner. The object operations are summarized in figure 3-10. S'

The model uses rules to describe attacker tricks. Each rule describes the -

conditions that allow one operation to grant another. The conditions are

expressed as a predicate on the values of one or more attributes for selected

objects. If the conditions are true, then the deduced grant relationship is added

to the OGM. .

51



" Controlling-Files
modify (cf): Attacker can change information read from file.
read (cf): Attacker can view information in the file.

" Privileges
acquire (p): Attacker can run any program in a process that has
access to the privilege, p.

Figure 3-10: Object Operations in the Model of Attacker Tricks

3.3.2 Representing Attacker Tricks

This section briefly describes how the model can be used to represent the

facts about attacker tricks that were presented in table 3-2. To avoid including

syntf -< details the representations are described in english.

The first two facts describe the privileges that have direct write access to .

/etc/rc and /etc. These facts are represented by the values of the writers

attribute of CF objects associated those files. These values are computed by

reading the protection information for the machine being analyzed.

The third fact states that the u. tor and u. alice privileges have direct

access to the group-id privilege g. staff. This fact is represented by the value

of the members attribute of the object associated with the g. staff privilege.

The next fact relates the value of a writers attribute of a CF to the

ability to perform the modify operation on the CF. It is represented by a rule

that says the operation modify (f) is granted by the operation acquire (p) for

all privileges, p, in the writers list ot the file object for f. Similarly, the last

fact is represented by a rule that says modify(f) is granted by modify(d)

where d is the parent directory of the file f. :.. .\,

In summary, facts about CFs and privileges are read from the protection

52

t~ %



information of the computer being analyzed and stored as the values of

attributes associated with those U~s and privileges. The deductions about the

relationship between operations are recorded in the 0GM, which is also the
output of this step of the analysis. The operations can be thought of as attacker

goals, and in this sense the rules which express attacker tricks describe how goals

can be achieved in terms of properties of objects and the ability to achieve

subgoals (i.e., other operations).

3.4 Transitive Closure Step

The only complication in the third step of security analysis is that the

transitive closure algorithm must handle all the knowledge about attacker tricks

that use more than one operation to grant the desired operation. For example,

one attacker trick for Unix requires write access to multiple directories and that

may require performing acquire operations on several privileges. On VMS

systems there is a trick for acquiring super-user privileges that requires both the
-S

privilege to submit batch jobs and the privilege to set the privileges of a job. A

regular transitive closure algorithm cannot handle this.

After computing the transitive closure of the 0GM, the third step extracts

N all the relationships between privilege operations and builds the privilege access

table. To build this table, the program needs to know about the initial

distribute of privilege to users. This information is read from the machine's &W

authorization database (e.g., /etcfpasswd and /etc/group) and stored in an
attribute of the objects that represent each user.

53J



3.5 Summary of Knowledge Model

The knowledge model that a Kuang system uses to check computer

security has one component that understands the behavior of trusted programs

and another that understands tricks a user could use to extend his privileges.

Each model has been presented by defining a number of objects that represent

the facts deduced by that model. The attributes of these objects express facts

about the configuration of the security system (e.g., the list of privileges that

grant write access to a file, or the list of commands execute when the computer

boots). Facts about the relationships between objects are recorded in separate

tables. For example, the fact that modify access to the directory /etc grants

modify access to the file /etc/lnit is recorded in the operation grant matrix.

Tables 3-3 and 3-4 list the key objects and tables for the two models.

* New deduction, are made by applying rules to the attributes of existing

objects. Each rule has an antecedent and a consequent. The antecedent is a

predicate that can select objects and test the values of attributes. If the

predicate is true, the consequent can create new objects, set the values of existing

attributes, or make entries in the tables. Conceptually, all antecedents are tested

after any change to an object. In practice only a small number of antecedents

need to be tested. The analysis ends when there are no new deductions.

54 .



" Process - Represents instantaneous state of a program.

" Privilege - Represents the tickets of the protection system.

" Script - List of actions a process will perform.

" P00 - Table of operations that can control a process. Organized by
the privileges available to the process.

Table 3-3: Objects in the Model of Trusted Programs

" Privilege - Represents the tickets of the protection system. Includes
information about its relation to other privileges.

" Controlling-File - Any source of information that controls a process
including programs, data files and directories.

" Controlling- Operation -A goal meaningful to an attacker.

" 0GM - Boolean matrix listing the Cos directly granted by each Co.

Table 3-4: Objects in the Model of Attacker Tricks

55



Chapter Four

Description of U-Kuang

This chapter presents information about the Unix (BSD 4.2) security

analysis system. The previous chapter presented an abstract model that could be

used by several Kuang systems, this chapter illustrates how the model is tailored

to a particular computer system. The first section describes the major

components of U-Kuang and the interfaces between those components. The

second section presents the functionality and features of its rule based system.

The last section lists the knowledge that it has about trusted programs and

attacker tricks.

4.1 Structure of U-Kuang

The program is implemented in three layers as shown in figure 4-1. The

lowest layer is a database for querying the security configuration of the computer

being analyzed. The database supports simple queries to examine file protection

information, and complex queries that involve parsing the contents of files. For

example, the database can parse the password file and return a list of all the
.'

users. The Instance Database contains all the knowledge about the format of

files on Unix.

The rule based system (RBS) builds a graph that describes how access to .

each privilege can lead to access to other privileges. The RBS layer is described

in detail in section 4.2. Its rules describe the behavior of privileged programs

and the tricks that can be used to acquire privileges. The RBS uses the rules and

the information in the instance database to build a model of the security relevant

56S



1LN3W

Access Policy -- > Policy Checker

A
I Privilege Graph

Abstractions, I
Facts, Rules -- > Rule Based System <==> Domain

A Model
I Queries, Parsers

Security I
Configuration -- > Instance Database

Figure 4-1: Structure of U-Kuang

operations that each user can perform. The model is built in a database module

called the Domain Model.

The top layer of the program checks for and reports on any violations of

the specified access policy. The final result of the RBS is a directed multi-graph

that describes how the privileges are connected. The nodes of the graph are

privileges. Each plan for acquiring a privilege P1 using a privilege P2 is

represented by an arc from P2 to P1. The policy checker takes the transitive

closure of this graph to compute the list the privileges accessible to each user. If

the computed list differs from the list specified by the access policy, the checker

scans the graph to identify the arcs that cause the violations. The plans

corresponding to these arcs are displayed to help the user debug the security

configuration. S

4.2 U-Kuang's RBS

The rule based system used by U-Kuang is similar to IKE [191. The main

difference is that U-Kuang's RBS queries a database instead of a person when it

needs information about the world being analyzed. The RBS is implemented in a

57

* 'Z 1'



dialect of lisp called C-Scheme [201. This dialect is well suited to a Unix analysis

tool because it allows lisp programs to call functions written in the C

programming language. A large amount of code for parsing Unix command files

and system tables already exists in C, so I did not need to re-implement it in lisp.

U-Kuang reasons about a model of the Unix security system that is

represented by objects. Each object has a number of attributes, and it is the

values of these attributes which represent facts about the security system. An

object's type determines the set of attributes it possesses and the type of values

that can be bound to each attribute. The values can be atomic objects (e.g.,

numbers, strings, lists) or references to other objects.

Object types are defined by an abstraction tree. The abstraction tree

defines a rooted hierarchy of types. Each type defines a set of attributes that are

inherited by all its subtypes. The abstraction tree makes it possible to write a

rule that applies to all subtypes of a given type. For example, many rules apply

to both directories and files, so they are both subtypes of a database type. The

abstraction tree for U-Kuang is shown in table 4-2. Details about some of these

abstractions are presented in section 4.3. Objects are instances of the leaf types

of the abstraction tree. As objects are created, they are placed in a database

called the domain model.

The inference engine contains both a planning system and a value-finding

system. The rules for the value-finding system describe how unknown attribute

values can be deduced from known attribute values. The rules for the planning

system describe how goals can be achieved from subgoals. The two inference

systems are unified by associating goals with attributes and by making plans be r7%i

one of the atomic types supported by the RBS. In this framework a single

backward-chaining inference algorithm can handle both planning and value-

finding.

58

y%9



0

1. Object-Root. Root of the tree.

2. Process-Segment. One piece of the behavior of a process.

3. FNE. Context for resolving file names. A table mapping strings to
strings.

4. Script. A list of actions a process-segment can take.

5. Privilege. A security capability.

a. User-Priv. Access to a user ID. 0

b. Group-Priv. Access to a group ID.

6. Controlling-file. The basic abstraction of the Unix file system.

a. File. Holder for directories, data files, and programs.

b. Swap-Space. Device that grant access to the raw file storage.

c. Partition. Device that grant access to the raw file storage. 0

7. Path-Name. Abstracts canonical file and directory names.

8. Program. Information about scripts that come from binary files or
shell scripts. S

9. User. Information about a user.

Figure 4-2: U-Kuang's Abstraction Tree

Each rule has an antecedent and a consequent. The antecedent is a

predicate on the state of objects found in the domain model. This predicate calls

lisp functions to lookup or create new objects in the domain model. The

consequent sets the value of an attribute for some object. If the attribute holds a

list value, the consequent can append elements to the list. For example, a

59

V.,-0 NSl



consequence can add a plan for achieving a particular goal to an attribute which

lists existing plans.

When a backward-chaining inference algorithm needs to determine an

unknown attribute, it searches its list of rules for the ones that might define the

attribute. The antecedents of each of these rules are evaluated and then one or

more consequents will assign a value to the attribute. This process is recursive

because evaluating an antecedent may require determining another unknown

attribute.

The special object, model, has pointers to all the objects created in the

domain model. It has attributes for each type of object and the values of these

attributes are the lists of objects of each type. For example, the value of

model. inode is the list of all the objects of type 1node or any subtype of

inode. One of the clauses that can appear in the antecedent of a rule tells the

inference engine to apply the rule to each element of a list value.

The initial contents of the domain model is described by a number of

facto. Each fact creates an object and initializes its attributes. As the U-Kuang

runs, it creates new objects and determines in the attributes for old and new

objects.

4.3 Example of Security Analysis

This section presents a detailed example of how the rules and objects are

used to uncover an operational security hole. Only a small part of the

abstraction tree and rule base is presented in detail. The entire knowledge base

is described in section 4.4.

The security hole considered in this section allows a user with access to

60l

0

tS



the u. tom privilege to acquire access to the u. alice privilege. Presumably this

access is contrary to the computer's access policy. The plan for exploiting this

hole is illustrated in figure 4-3. Access to the u. tom privilege grants access to

the g.guest privilege because Tom is a member of the guest group. The

g.guest privilege has direct write access to the file /usr/alice/.login.

That file is a controlling-file (CF) for a process that runs with the u.alice

privilege. Specifically, when the user Alice logs into the computer, her shell

(command interpreter), /bin/sh, reads a list of initialization commands from

that file. An attacker who can add a command to this file can create a copy of

the shell that sets it's user-id to the u. alice privilege. The attacker could then

use this special shell to execute any desired program and that program would

inherit access to the u. alice privilege from the special shell9 . The rules and

objects used to create this plan are explained below.

To uncover this hole, U-Kuang uses knowledge about the behavior of the

/bin/sh program and knowledge about how someone could modify the file

/usr/allce/. login. The facts associated with this knowledge are represented

by the values of attributes of four types of objects: process-segment, privilege,

script, and controlling-file. The attributes for each of these objects are listed in

figure 4-4 and described below. 0

The main difference between the abstract model presented in chapter 3

and the model used by the Unix checker is that the checker must build detailed

plans describing how each user can acquire the privileges that are accessible to

that user. In the abstract model, the first step in the analysis just records the

9 There are many ways an attacker can install a back-door that allows later access to Alice's %

privileges. Some people believe that the set-id feature is the root of all Unix security problems.
This is wrong. The feature is just the simplest way to install a back-door. Alternatively, the
attacker could change Alice's search path to include one of his directories. The attacker would
install programs in this directory that had the side-effect of executing his commands as well as
the commands that Alice intended.

61



Rule Z
acquire (u. tom) --------- > acquire (g. guest)

Rule Y

V
write (/usr/alice/. login)

J Rule X

Rule W V
acquire (u. alice) <--------- control(/bin/csh for alice)

Figure 4-3: Plan to Exploit an Operation Security Hole

controlling-operations that provide toeholds for each privilege. The Unix checker

must identify the precise step in the behavior the process that provides the

toehold. For example, on Unix the same process executes the login program and

the shell for a user. Initially the process has access to super-user privileges, but

later it just has the privileges available to the user. An attacker would prefer to

control the process while it had super-user privileges. To keep track of the

changing privilege state, the abstract process is modeled by a series of process

segments (PSs). Each segment has a fixed privilege and naming state. Actions

that would change either component of the state, create new PSs.

Another difference is that the abstract model has separate tables for

recording the relationships between operations whereas U-Kuang records these

facts in the attributes of the objects that represent process segments, privileges

and controlling-riles. As shown in figure 4-4, PS objects have an attribute that

lists all the plans for controlling the PS. If an operation provides a toehold for

controlling a particular segment of a process, then that operation is expressed as

a plan and it is added to the list of plans in the controllable attribute for

that segment. The set of privileges granted by this operation can be deduced

from the privileges attribute of the PS. In this way, the privileges and

.% 62

W~



W

Process-Segment

" privileges - Fixed list of privileges available to this PS.
" naming - Fixed table of naming information. 0

" current-action - Current action taken by this PS (mutable).
" script - List of remaining actions (mutable).
" controlling-files - Deduced list of controlling-files for this PS.
" forks - Deduced list of programs forked by this PS.
" sources - Deduced list of files that provide scripts.
" controllable - Deduced list of plans to control this PS.

Privilege

" kind - Fixed value one of Group or User.
" id - Fixed integer.
" members - Fixed list of user-privs with access to this privilege.
" processes - Deduced list of process-segments that have this privilege.
" accessible -Deduced list of plans to acquire this privilege.

Script

" new-naming - Specification of changes to naming state.
" new-priv - Specification of changes to privilege state.
" to-fork - Specification of programs to fork. The name of the program

file is resolved using the naming state of the PS.
" to-source - Specification of files to parse to get scripts. Alternatively

this can specify script constants.

Controlling-File

* writers - Fixed list of privileges that grant direct write access.
" readers - Fixed list of privileges that grant direct read access.
" parent-directory - Fixed list of directories that contain this CF. S
* writable - Deduced list of plans for to achieve write (cf).
e replaceable - Deduced list of plans for to achieve replace (cf).

Figure 4-4: Object Attributes for Analysis Example

3

63 0

_ •-



N-AWWWX V

Rule 1: Any file sourced by a process is a controlling file
for that process.

Foreach PS In model.process-segments
Bind 'action to ps.current-action
Foreach cf in action.to-source

Then
set ps.controlling-files includes cf

Rule W: A privilege can be acquired by gaining control of
one of the processes that runs with that privilege.

Foreach priv in model.privileges
Foreach ps inl priv.processes

If ps.controllable
Then

achieve priv. accessible

Rule X: A process can be controlled by writing one of its
controlling-files.

Foreach ps In model.process-segments
Foreach cf in ps.controlling-files

If cf.writable
Then

achieve ps. controllable

Rule Y: A controlling-file can be written using any of the
privileges that have direct write access to that file.

Foreach cf in model.controlling-files
Foreach priv in cf.writers

Ifj priv.accessible
Then

achieve cf. writable

Rule Z: A privilege can be directly acquired by all of the
users who are 'members' of that privilege group.

Foreach priv in model.privileges
Foreach user-priv in priv.members

If user-priv. accessible
Then

achieve priv. accessible

Figure 4-5: Rules for Analysis Example

64

% :WV N N



A.

controllable attributes replace the table of privilege controlling operation

that was described in chapter 3.

In a similar way, the write(cf) and replace(cf) operations are

represented by the values of the writable and replaceable attributes of the

controlling-file object. A fact like write (/etc) grants replace (/etc/lnit)

is expressed by a plan stored in the replaceable attribute of the /etc/init

object. By representing the operation grant matrix by the values of attributes it

is possibl to express attacker tricks as rules for finding the values of attributes.

In this case, the rule describes how to fill in the replaceable attribute for a file

object from the value of the parent-directory attribute for this object.

As the RBS runs it creates new PSs and simulates the actions specified in

the script for each PS. At some point, the simulation will model the logging in of

the user Alice. A PS will be created to execute the /bin/csh program and its

privileges attribute will include u. alice.

When the PS for Alice's shell is created, Rule W of figure 4-5 is triggered.

This rule expresses one of the attacker tricks. It says that the acquire (priv)

operation can be achieved by controlling any PS that includes priv in its list of

privileges. This information is encoded as follows: The foreach clause on the

first line of Rule W tells the inference engine to apply this rule to all the

privileges that are created in the domain model. The notation

model.privileges selects the privileges attribute of the model object.

Recall that the special object model records all the objects of each type. One at

a time, each privilege is bound to the label priv. Associated with each privilege "

is a list of the PSs that have this privilege in their privilege state10 . The second

line of Rule W binds the label ps to each one of those PSs. The remaining lines

10A different rule updates this attribute as new PSs are created.

65

I.~~~~ Vu. ~ ~ ..



of the rule construct a plan relating the ability to control the PS, ps, to the

ability to access the privilege, priv.

V

The plan created by Rule W can be thought of as adding a grant

relationship to the OGM. Equivalently the plan defines an arc in figure 4-3, 1"%

which can be viewed as an operation grant graph. The accessible attribute of

a privilege object represents the ability to perform the acquire (priv)

operation. Likewise the controllable operation represent the control (ps)

operation. The plan built by Rule W indicates that control (ps) grants A
acquire (priv). 0

The behavior of the Alice's shell is represented by a compiled-in script.

That script is held in an object of type program and it is extracted from the

knowledge base using its canonical pathname (/bin/csh). One of the actions in

that scribe tells the process to source (read and execute) commands from the file

/usr/alice/. login. When this action becomes the current-action of the

PS, Rule 1 of figure 4-5 will trigger.

Rule 1 records a piece of knowledge about the behavior of trusted

programs. It states that any file that provides commands for a process is a CF ee

for that process. The first line of the rule binds ps to each PS in the domain - .0

model. The second line binds the label action to the current action of that PS.

The effect of these two line is to cause this rule to be examined each time the "

current action changes for each PS created. The third line iterates over the list

of files sourced by the current action. If such files exist, the consequent of the

rule is executed. The consequent adds the name of the sourced file, in this case

/usr/alice/. login, to the list of CFs for this process segment. ,.N J.

Skipping the details of syntax, Rule X examines the list of Fs for each PS

and constructs a plan relating the writable attribute for each CF to the

66 ~

66 - .. '.-.



controllable attribute of the PS. This plan adds the arc in figure 4-3 between

the write (/usr/alice/.login) operation and the control(/bin/sh for

alice) operation.

Other rules examine the controlling-files attribute and according to

information found in the naming state of the PS, those rules add plans to the

controllable attribute of the PS. This extra level of indirection makes it easy

to express knowledge about how names are resolved. If a CF is specified by a

search path, then plans to control the PS are added for each directory searched

before the CF was found.

Each time a new CF object is created, Rule Y is triggered. This rule binds

the label priv to each privilege listed in the writers attribute of the CF. The

value of that attribute is computed by a lisp function in the instance database.

The function examines the security configuration of the computer being analyzed

to see which privileges have direct write access to the CF. The last three lines of

Rule Y construct a plan linking the writable attribute of this CF to the 4

accessible attribute of the privilege identified by priv.

The final arc in figure 4-3 is filled in by Rule Z. That rule is applied to

each privilege in the domain model. It binds the label, user-priv, to each of

the privileges listed in the members attribute. This list is empty for user-priv

objects, but for group-priv objects it lists the user-priv objects that have direct

access to this group-priv. In this example the privileges u.tom and u. alice

have direct access to g.staff. The consequence of Rule Z builds a plan that

says acquire (u. tom) grants acquire (g. staff).

Viewing figure 4-3 as an operation grant graph, the last step in the

analysis is to take the transitive closure of the graph. The plans that allows an

attacker to go from acquire (u. tom) to acquire (u.alice) are built by

concatenating the plans for traversing each arc between those two node.

67

II I III 1 11 111 111.



4.4 Knowledge about Unix Security

The purpose of U-Kuang's model of Unix is to identify all the ways that

trusted programs can be manipulated to grant users additional privileges. The

model assumes that all programs function as expected and it includes all the

attacks published by researchers at Bell Laboratories ( [251 and [10]). U-Kuang is

not trying to find or exploit bugs in the software. The goal is to analyze the

interactions between the kernel and the privileged program to see how access to

one privilege can lead to access to other privileges. To carry out the analysis, the

RBS needs knowledge about the tricks for extending privileges, and knowledge

about the behavior of trusted programs. Basically, the RBS simulates the activity

of the programs and looks for actions that can be tricked into extending the

privileges available to some user.

U-Kuang's model of the Unix security system contains abstractions and

rules. The abstractions define object types and thus they define the organization

of the facts that the RBS will deduce about Unix. The rules are organized around

goals that are meaningful to an attacker of the system. The four goals in U-

Kuang's model are acquire privilege, control process, write file,

and replace file. The write and replace goals are both aimed at

changing the information found when a process opens a file for reading. The

difference is that the replace goal allows changing the ownership of the file11,

whereas the write goal requires that the ownership of the file does not change.

Basically, the goal of acquiring a privilege is achieved by controlling a process

that runs with the desired privilege. Control is achieved by writing or replacing

a file that is critical to the behavior of that process. Completing the loop,

writing a file is achieved by acquiring access to a privilege.

llFor example, deleting the original file and creating a new one in its place is an acceptable
way to replace a file.

68%

V% r c -C



This chapter presents the contents of U-Kuang's knowledge base without

going into the details of how that knowledge is represented. Knowledge about

attacker tricks will be presented :first.

4.4.1 Attacker Tricks

Knowledge about attacker tricks is organized by the four attacker goals:

Acquire privilege, Control process, Replace f ile, and Write f Ile.

Acquire Privilege

The goal of acquiring a privilege means that the attacker can execute an

arbitrary program in a process with the effective user-id or group-id set to the

desired privilege. U-Kuang has two tricks for acquiring a privilege.

1. Find a user account that has direct access to the desired privilege,
and does not have a password.

2. Find a process segment that runs with the desired privilege and is
controllable.

Other possibilities include guessing at passwords or taking active measures

to intercept a password. These were not modeled.

J0
Control Process

A process is controllable if an attacker can cause it to execute (or create

another process to execute) a program chosen by the attacker.

The general trick for controlling a process is modifying a database that

controls the process. For example, the file containing the executable code for a

process is one of the controlling databases. Other controlling databases include

directories that are searched or data files that influence the forking of processes.

The knowledge about trusted programs and the simulation of those programs

produces the list of databases that control each process that, runs with a

69

V~'~~

X o



particular privilege. The attacker trick for exploiting controlling databases has

two forms depending on whether the ownership of the database is allowed to

change. They are shown in figure 4-6.

1. Find a process segment for this process that has a controlling
database that is replaceable.

2. Find a process segment for this process that has a controlling
database that is writable (i.e., the ownership of the database file may
not change).

Figure 4-6: Rules to Control a Process

In general, an attacker might need to modify several files in order to gain

control of a process. Surprisingly, this research did not uncover any cases where

more than a single file needed to be modified. The closest the model comes to

the double-file situation is the workings of the riogin program (see section

4.4.2). If a user has a non-empty . rhosts file, then an attacker who can modify

the host name table can masquerade as the user authorized in the . rhosts.

This plan assumes that the attacker has super-user access on some computer

attached via a network. This trick can only be used if the . rhosts file is not

empty and the /etc/hosts file is replaceable. It does not depend on the

replaceablity of both iles.

Replace File

A file can be replaced if the attacker can change the information obtained

when a process opens and reads from that file. The ownership of the file is

allowed to change. The tricks for achieving this are shown in figure 4-7.

The last rule handles the recursive nature of the replace goal. Replacing.

a directory file can be achieved by replacing the directory which contains the

original directory, etc. Making a list of all the directories that are examined

70



1. Achieve the goal write f Ile.

2. Achieve the goal replace dir for the parent directory of the file.
This trick works by deleting the original file and replacing it one that
has the desired contents.

3. Achieve the goal replace dir for any directory searched before the
desired file was found.

Figure 4-7: Rules to Replace a File

when a file name is resolved is complicated by search paths and indirect file

names (soft-links). A lisp function is used to handle these complexities.

Write File

For attackers to be able to write a file, they must be able to change the0

contents of the file without changing the ownership of the file. The tricks for

achieving this are shown in figure 4-8

1. Acquire super-user privileges. This rule expresses the importance of
super-user access.

2. Acquire access to any privilege that has direct write access to the file.

3. Acquire access to the privileges of the file's owner. The owner can
always change the protection modes of the file to grant herself write
access.

4. If the directory containing the file is writable, find a writable file on
the same disk partition that has the same owner.

Figure 4-8: Rules to Write a File

The last rule works because the original file can be deleted and some other

file with the same owner can take its place. This attack depends on the feature

that the Unix move (rename) system call does not change the ownership as long

as the file moves within the same disk partition.

71

If 000



4.4.2 Trusted Programs

U-Kuang's knowledge about trusted programs is organized on a per-

program basis. The behavior of each program is specified separately. Since the

underlying model was presented in the last chapter, and the knowledge inference

techniques were presented section 4.2, the knowledge base can be presented by

listing the facts that are known about each trusted program.

Advocates of rule based systems claim that knowledge can be added in a

modular fashion. Within limits, this statement is true. As long as the basic

model that underlies the RBS does not need to change, information can be added

easily. For example, adding information about another program that uses search

paths is not difficult. However, adding the first program that used search paths

was difficult. An early version of U-Kuang did not have the notion of a P!il c

Naming Environment. It could not represent attacks based on search paths.,t?

Adding the FNE required changing almost all of the rules.

Init

The nit program drives the session cycle (login, shell, logout). Before

any sessions are started it forks (i.e., creates a new process to execute) a shell,

/bin/sh, to execute the commands found in /etc/rc. When that completes,

nit examines the database in /etc/ttys to determine which program to fork

for each tty device. The default is to fork the program /bin/getty. The

database can specify other programs to fork. .

Getty

The program getty waits for a terminal device to become active, prints a

greeting banner, and requests a username. By default it passes the username to

the login program, but an alternative program can be specified in the file

/etc/gettytab. The list of possible programs forked is computed by a script

parsing function that examines /etc/gettytab.

72

66:tt



Inetd

The TCP/IP daemon, inetd, mediates all network connections. It behaves

like getty for remote logins via a TCP/IP network. The mail daemon and file

transfer daemon are forked by inetd. One of the first actions of this program is

to change its user and group IDs to daemon.

Login

The login program forks a shell (or other program) for each user that can

log in. The file /etc/ftpusers lists the users that are not allowed to login.

The ftpusers database allows anonymous file and mail transfer without 0

allowing anonymous login. The login program is modeled by a process that

changes its privileges and forks a shell for each user in the file /etc/passwd

that is allowed to login. The password file is treated as the source of a script for

the login program. Any account that does not have a password can be accessed

by all users via the login program. They are also accessible via the su

program.

Shells

Shell programs are the Unix command interpreters. When a shell is

started to read commands from a user's terminal (as opposed to executing

commands from a file), it begins by reading commands from an initialization file.

For example, the shell, sh, rcads commands from the file . profile in the user's

home directory. Some shells read command files on logout as wells as on login

(e.g., csh), and others read initiation files that are shared by several users (e.g.,

all the students taking a particular class). The behavior of each shell is

represented by an initial script of actions for that shell.

When a shell is invoked in non-interactive mode, it skips reading some of

its initialization files. U-Kuang models this by treating the non-interactive shells

as different programs that have different initial scripts.

731



Currently, U-Kuang's simulation does not include the fact that most user's

invoke a text editor, or any of a number of other common programs. It would

be easy to add this. The parser for the shell initialization file would be extended
to append a list of programs which the given user executes. This information

could be extracted from the system accounting records. To take advantage of

this new information, the program should also be extended to include knowledge

about the behavior of the common programs (e.g., gnuemacs, vi., and cc).

These improvements are not necessary to check for the possibility that an

attacker has created a hostile program that will be invoked when the user thinks

he is invoking a friendly program (i.e., a trojan horse). This sort of attack is

based on the fact that a search path is used to resolve command names. All the

commands in the login initialization will be resolved with the aid of that search

path (including commands to change the search path), so most initialization files

will exercise the search path sufficiently to turn up any possibilities for trojan

horses.

Shell programs resolve command names in a complex way that refers to

shell variables which are passed from one program to the next as part of a

program's environment. For example, the command search path is stored in one

shell variable whereas the editor library search path is held in a different

variable. One shell, sh, uses a shell variable, IFS, to set the inter-field separator

characters (normally blank and tab). U-Kuang knows about attacks that exploit

this feature. U-Kuang has procedural knowledge about how shell variables are

used to resolve file and command names. Each trusted program states which

procedure is used to resolve each name.

Cron

The cron program executes commands periodically and it is the central

feature of the automatic management system provided by Unix. Cron actually

74

V % *W



runs continuously, but U-Kuang models it as a program that runs once

performing all the actions that are specified in /usr/lib/crontab. That file is

treated as the source of cron's script. In general, U-Kuang models system 6

daemons as running once and performing all possible actions. The fact that

cron runs with root privileges is deduced from the fact that it is forked by a

command in /etc/rc which is read by the init program.

Atrun

The atrun program allows users to request that commands be executed at

a later time. Atrun provides the features of cron to ordinary users. Ordinary S

users are not allowed to write the crontab file because any program mentioned

in crontab will be run with super-user privileges. The atrun program

determines the privileges it should use when executing a command by looking at

the ownership of the request file in the directory /usr/spool/at. Anyone who

can create a writable file in that directory with a given ownership can acquire

privileges available to that owner. The attacker trick of moving files within a

disk partition makes this easy, so many Unix sites do not run the atrun

program.

Remote Execution

The rsh, riogin, and riogin programs allow remote operations. They -

allow a system administrator to state the list of all the hosts which are trusted by

all users. This information is kept in the file /etc/hosts. equlv, and the host

names in that database are resolved with the aid of a database stored in S

/etc/hosts.1 2 Each user can list additional hosts and users that he trusts by 44
specifying them in a file, . rhosts, in his home directory. The server end of

these programs (rshd, riogind, and rcpd) insist that the .rhosts file is
S

owned by the user whose account is being accessed. *x.

12 This research predates the conversion to a distributed nameserver system.

75 V



Syslog

The syslog program records system activity and sends messages about

critical system events. It appends messages passed to a Unix system call into one

or more files as specified in /etc/syslog. conf. Since syslog runs with root

privileges, replace access to sysiog. conf grants append access to all files (like

the password file).

Sendmail

The heart of the Unix mail system is the sendmail program. It is

invoked by any user who sends mail, and it is run with daemon privileges when

it is invoked by inetd on inbound messages. It reads several databases any one

of which can be used to gain access to the privileges that sendmail is running

with. The databases in the /usr/lib directory are: aliases, aliases.pag,

aliases.dir, sendmail.cf, and sendmall.fc. It also reads a file in each

user's home directory, . forward. An essential ingredient in all attacks based on

these tiles is that the mailer can be told to invoke an arbitrary program in

addition to appending a message to some mailbox file.

The Unix mail system has several security problems, but these were the

only ones that were modeled by U-Kuang.

... and so forth

A complete model of Unix would need to include several additional

programs. All programs that run with super-user privileges should be modeled.

Currently U-Kuang just prints warning messages identifying the program it

doesn't know about. The programs it does know about were chosen to illustrate .I

the range of interactions that are possible between trusted programs.

76

A

R. III

0



Chapter Five

Experience Running U-Kuang

An early version of U-Kuang has been run occasionally on about 30

computers at MIT. The first time it is run, it almost always finds a hole that

allows all users to acquire super-user privileges. Most of the problems are simple

mistakes like group writable initialization files in the home directories of

privileged users. After U-Kuang has been run a few times users learn about the

interactions between different privileged programs and the simple errors

disappear. In many cases system administrators were surprised to learn that

there was no difference between the privileges they have been calling staf f,

operator, and wheel. They all could be used to acquire super-user

privileges 1 3.

U-Kuang has been run regularly on three machines that try to be secure

and on these machines it finds approximately two new problems each month.

One source of problems is the fact that critical databases for super-user processes

exist in several directories. There are numerous reasons for allowing users to

have write access to one of those directories, and that access can be used to

acquire super-user privileges. Another problem arises from a common procedure'.

for updating system tables. The old file is renamed to preserve the information

about its last write date, then a new copy is installed and edited. Unfortunately

the new copy is created with the default protection settings of the current

13 A discussed in the chapter on limitations and extensions, it may be feasible to build a

monitoring system that notices when a lower privilege like staf f is being used to acquire super-
user privileges.

77



process, not the settings of the original file. The new settings usually create a

security hole. A general tool for updating any system file would be easy to

implement and would help eliminate this kind of error. Many system 0

administrators use such a tool (vipw) to update the password file but they need

a tool that can handle all system tables.

Security holes that did not involve system tables usually involved two or

three levels of indirection. Many users have personal bin directories which hold

customized versions of their favorite programs. These directories appear first in

the users' search path, and thus are good places to plant trojan horses. On one S

system, which was intended to be secure, U-Kuang found an operational security

hole that allowed any user to acquire super-user privileges by going through three

users, alice, bob and charles1 4 . Alice philosophically objected to computer

security, so she allowed anyone to write her home directory. Anyone could .

acquire her privileges by replacing her login initialization file. In particular, she

was a member of the games group. Bob's personal bin directory was writable

by anyone in the games group; anyone who could get access to the games

privilege could plant a trojan horse in /usr/bob/bin and acquire bob's

privileges. Bob was not a trusted user, but he was a member of the friends %

group which charles had set up for his friends. The last connection was that

charles, who had operator privileges, had a program in his bin directory %

which was writable by anyone in the friends group. The program had been

written by another member of the friends group, and charles had moved it

to his bin directory without changing its protection modes. By indirecting

through alice's and bob's accounts, anyone could plant a trojan horse in that

program and thus they could acquire operator privileges from charles. As . '

mentioned earlier, operator privileges are usually sufficient to gain super-user

privileges. It would be quite hard for a person to check for holes that involved

three levels of indirection but U-Kuang has no trouble finding them. -'

1 4 Not their real usernames. 0

78

_6



!LS

The running time of U-Kuang depends primarily on the number of group

privileges, not on the number of users. It takes U-Kuang about 15 seconds to

analyze a system with 100 users and 10 groups, and about 40 seconds for a S

system with 1100 users and 30 groups. More precisely, the running time of U-

Kuang is proportional to the number of edges in the privilege graph. The

privilege graph is a multi-graph whose nodes are privileges and files. The

number of edges between any two nodes depends on the number of rules which

describe plans for using access to the first node to grant access to the second

node. There are very few rules that specify how an attacker can go from a user

privilege to a group privilege, whereas there are many rules specifying how to go •

between group privileges. Thus the running time depends primarily on the

number of group privileges, rather than the number of user privileges (i.e., the

number of users).

U-Kuang has also been used to find back-doors15 left by someone who

cracked into a system. U-Kuang quickly finds any file protection modes that

have been changed by the cracker. In one case it found an extra device file for .

the disk partition that contained the ibmL directory. The cracker had a

program that could use write access to that disk partition to create a shell with ".

super-user privileges. One blind spot of U-Kuang is that it does not check for

extra programs that have the set-user-id feature. Crackers often create such

programs with the super-user or operator privileges. This blind spot could be

corrected by adding a few facts to the knowledge base.

Another weakness is that the program does not check for extra accounts

that the cracker might have created, or unused accounts that now have
passwords known to the cracker. It is not clear whether a rule based approach

A back-door is any modification that makes it easier for a system cracker to get back into a

system.

79



could systematically search for this kind of back-door. It may be that the best

way to check for back-doors is to compare the system to an earlier snapshot of

itself as suggested in [25].

This experience does not imply that the Unix security system is flawed.

The correct conclusion is that people make mistakes when they change the

configuration of complex security systems. U-Kuang finds these mistakes.

all

80~.



Chapter Six

Limitations and Extensions

Preceding chapters have described a rule based system that can analyze

Unix systems and identify serious operational security holes. This chapter

discusses the limitations and extensions of a rule based approached to security

problems. The first section addresses the question of building Kuang systems for

other operating systems. The second section points out that it is possible to

answer interesting questions about a security system by examining properties of

the rule based model for that system. Section three identifies two obstacles that

make it difficult to synthesize protection decisions from specifications of the

access policy. The last section discusses the possibility of using a rule based

approach to detecting inappropriate system activity.

6.1 Other Operating Systems

Many features of computer systems can be simulated using the model

presented in Chapter 3. The question is whether there are important features of

a system which are not captured by the model. For example, DEC's VAX/VMS

system has a flexible file protection mechanism that includes both group

restrictions and access control lists. This turns out to be easy to convert into the

abstract model because the model uses general access control lists. However, this

does not prove the the model can handle all the security relevant features of VMS.

A Kuang system for VMS would need to know about third-party software .. 'w

like the TCP/IP network facilities. In general, third-party software does not use

the protection facilities as well as the software which was developed by DEC. Ita.0

81

612
% VY



would be important for the Kuang system to know about these packages and

know how to tell if they are being used.

6.2 Analyzing the Rules

The rules that describe a particular operating system form a

representation of that system, and as with all representations there will be

questions which are easier to answer using that representation than others. The

rule based description can provide new insights into the nature of the system, or

provide an easier way to analyze a suggested change to the system. S

One interesting question to ask about a security system is whether

conspiracy between users can yield surprising results. For example, most bank

vaults cannot be opened unless two employees conspire to open it. More

precisely, the question is whether the set of privileges achievable by two users

working together can be larger than the union of the privileges achievable by

each user operating alone. If conspiracy yields greater gains than the union of 0

each conspirator's privileges, then the security checker's job becomes more

complex. It must consider the privileges accessible to each group of conspirators.

The policy specification language become correspondingly more complex since it

must specify the acceptable and unacceptable forms of conspiracy.

The conspiracy question can be answered by examining the rules

describing a security system. If the antecedent of each rule requires at most one .

privilege, then conspiracy does not yield surprising results. U-Kuang's rules have

this property, so conspiracy is not a problem within its model of the Unix

security system.

There is nothing inherent in the Unix operating system that eliminates

conspiracy. It would be easy to build an trusted program that could not be

8



subverted unless two files could be written. If those rles require different

privileges for writing then a conspiracy might be required to subvert the process.

Notice that if one of the two files required super-user privileges to change, then

conspiracy is not necessary. The program can be subverted if and only if the

attacker can acquire super-user privileges. For some reason, programs like this

do not exist on current Unix systems.

6.3 Synthesizing Protection Decisions

This project focused on the analysis of security systems, but an obvious

extension is a system that can synthesize protection decisions (e.g., the ownership

and protection modes for a file or directory) from a specified access policy. The

system would need to handle new objects added to the file system and new rules

added to the policy specification. The access policy would have to categorize

objects which will be created in the future and then specify the access restrictions

for each category. For example, a simple policy language might allow objects to

be categorized by the program that created them or the directory that will

contain them. Once the rule based system knows what restrictions apply to the

new object, it must pick access controls that are consistent with all existing

access policies. That is, it must be sure that the new object does not allow an

attacker to acquire some new privilege. That part is easy; U-Kuang already

performs that computation. The hard part is picking the correct access

restrictions efficiently. Presumably the system would have rules that would

guide this choice.

The second problem with synthesis is changing or amending the policy

specification. It is easy to imagine that a new restriction could force a large0

number of protection decisions to change. It is also possible to add a rule which

makes the policy specification inconsistent or unrealizable. If the policy
V

83

F. PL

~-



specification language is complex, the questions about whether a policy is

consistent or realizable becomes undecidable. However, the fact that some

policies lead to undecidablities does not force us to give up hope. A single S

decision procedure may exist that can make the decision in bounded time for

most policy specifications.

6.4 Computer Security Monitoring

Often users have the capability to perform some operation, but they are

expected to refrain from performing it. If a computer had a truly flexible and

convenient protection system, this sort of excess capability would not exist.

However, modern protection systems are inflexible and hard to use, so this case

arises frequently. The administrators of such systems would like to monitor

these trusted users to determine whether they have become untrustworthy or

whether someone else is using their account to crack into the system.

Most Unix sites have excess capability associated with the staff or

operator group. Either of these privileges is usually sufficient to acquire super-

user privileges. To the extent that U-Kuang's model is complete and accurate, it

can construct all the plans that use those privileges to acquire super-user access.

Thus U-Kuang could be an important piece of a Unix security monitor. It would

be the piece that knows how an attacker might bootstrap his privileges. The rest

of the monitor would have the job of examining the system activity (or the logs

of system activity) to see if any of the plans are being performed. A general rule

based system could encompass both the plan generation and the activity

checking.

84

--. N. .- $X*q



Chapter Seven

Conclusions

This thesis presents a novel solution to a long standing problem in theZ

field of computer security. The problem is that a security system can be no

better than the people who use it. Even if a computer's protection mechanism

are free from software bugs, users can be lax or inconsistent in the ways that

they use the protection mechanisms, and this leads to security holes. The

computer will be doing exactly what it was told to do, but the overall effect

could allow an attacker to acquire undesired access. Such an effect is called an

operational security problem to distinguish it from a problem due to the designIO

or implementation of the system. This thesis presents a general model for

analyzing the operational security of computers and it describes how that model

was used to implement a rule based security checker for Unix. The checker, U-

Kuang, was run on several of MIT's undergraduate machines and it frequently

found significant security holes.

7.1 Highlights of the Problem

A computer is operationally secure if the collection of operations that each

user can perform is consistent with the security policy for that computer. Two

approaches have been used to ensure the operational security of computers. The

first approach is to choose a restrictive language for expressing security policies

and then build protection mechanisms that directly read and enforce the policy

specification. Operating systems aimed at military users have taken this

approach. Such systems include ADEPT-50 [24), Multics [18], and SCOMP [12].

85 i

lob



Unfortunately the range of policies that these systems can express is limited, and

it is still possible for severe operational security problems to arise. For example,

the system administrator might leave his login initialization file publicly writable

and this could allow other users to execute commands using the administrator

privileges. A serious problem with these restrictive languages is their assumption

that the major function of a computer is to store and retrieve information.

Basically, computers are treated as glorified bookcases. It is not clear how these

languages can be extended to handle an information system that is more like

newspaper publishing house than a bookcase.

The other technique for ensuring operational security requires that the

computer's administrator periodically audits the configuration of the security

system. The security configuration includes the protection information of all

files, directories, and programs. The full security configuration is quite large. To

simplify the audit, administrators enforce restrictive policies that reduce the

complexity of the audit. However these policies may be hard to enforce, and if

they are enforced, they may sacrifice the flexibility that initially attracted the 0

users to the computer system. For example, Unix has an information sharing

mechanism that allows a user to specify a program that the system should invoke

when electronic mail is delivered to that user. Some sites turn off this feature to

avoid complex interactions with other programs in the security system. No

matter what the policies are, they are only checked when the administrator has

time to check them. There is little guarantee that the system will stay in a

secure state after the audit.

As systems implement new mechanism for flexible information sharing and

automatic system management, the complexity of the security system increases.

Additional features lead to additional programs that must be considered part of

the security system. A few examples should convince the reader that the number

of trusted programs has already increased as computers have become more

86

1 *, IF ..Y



useful. The trusted programs in Unix include: the login server, the command

interpreter, the program that executes batch commands, the program that

executes commands on other computers, and the program that automatically

installs new software that has been released over a trusted network connection.

The possible interactions between these programs makes security checking a

complex problem.

7.2 Overview of the Solution

This thesis presents a rule based approach to security checking and

describes a program that can automatically audit the operational security of Unix

computers. The primary benefit of this new approach is that it is systematic and

thorough. It harnesses the power of the computer to help users cope with the

complexity of the security system. A rule based system can use knowledge about

the behavior of trusted programs and knowledge about the tricks attackers use to

extend their privileges to exhaustively analyze the ways that each user could

achieve additional privileges. By dealing with the complexity of the auditing

problem, this approach provides a new way to resolve the conflicting

requirements of security and flexibility. 
.

The major intellectual contribution of this work is a model for

representing and reasoning about security systems. Chapter 3 presents the

general model and discusses how the model represents the major concepts found

in the Unix and VMS operating system. Chapter 4 describes the implementation

of a Unix security check based on the general model.

The unifying principle of the model is that operational security problems

arise when an attacker can modify one of the sources of information that controls

a trusted program. For example, the search path that is used to convert a

program name into a file name defines a security critical database for theN

87

N!0



command interpreter. If an attacker can modify part of this database, then he

can gain control of the privileges available to the command interpreter by

substituting his own program for the expected one.

The unifying principle leads to the concept of a controlling-file (CF). This

concept includes programs, data files, directories, system tables and logical

names. Any source of information that allows an attacker to gain control of a

process is considered a controlling-file for that process. The principle also helps

to identify the key information that must be known about programs. The only

facts that must be represented about the behavior of a program are those that

influence the choice of controlling-files and the set of privileges available to the

program.

Chapter 3 describes a simple model that is used to express the tricks that

attackers use to exploit CFs. The model has two types of objects: privileges and

CFs. The privilege object represents any ticket that the operating system checks

to decide whether to allow access to a protected resource. For example a Unix

user-id is a privilege. Both types of objects have attributes that express facts

about the security configuration. For example, a privilege object would have a

members attribute listing the other privileges that grant direct access to this

privilege. A CF object would include a writers attribute listing the privilege

objects that grant direct write access to the CF. The CF object for a file would

include a parent-directory attribute that refers to the CF object representing

the directory that contains this file.

The goals of an attacker are expressed in terms of abstract operations on

privilege and CF objects. The basic goals are acquire (priv) which means an

attacker can gain control of a process that runs with the privilege priv, and

mocify(cf) which means that an attacker can change the information that a

program would find if it accessed cf. The purpG.;e of a security analysis is to

88

% b%

INAe Z'P



DF

compute the list of goals that each user can achieve. This list can then be
compared against a policy specification and any differences can be reported.

An attacker trick is represent by a rule that describes the conditions under

which one goal can be achieved by another goal. The conditions are expressed as

a predicate on the the values of attributes. For example, if modify access to a

directory grants modify access to all the files in that directory (e.g., all the iles

can be deleted and recreated with the desired contents), this trick can be

expressed by the rule:

if d = f.parent-directory
then

modify(d) grants modify(f)

To find out which users can acquire each privilege, the knowledge about

trusted programs is used to compute the list of CFs that grant access to each

privilege, and then the knowledge about attacker tricks is used to find all the

ways that those CFs could be modified by each user. Section 4.3 describes this

analysis process in detail. 0

7.3 Conclusions

The experience related in chapter 5 shows that the Unix security checker

can uncover serious operation security problems. These security holes are created

by user mistakes, not by software bugs. It appears that even a security conscious

user community will make serious mistakes on a monthly basis. Most of these

mistakes involved three or more levels of indirection, so they would be very hard

to find manually. The experience with U-Kuang demonstrates that a rule based

system can analyze the complexities of a modern security system.

One benefit of an automated security checker is that the frequency of

security audits can be increased. A manual audit takes a long time sc it is done

89



rarely. The automated audits take less than a minute on Unix so they can be

done frequently. These audits do not prevent operational security holes, but they

do detect them quickly. Of course quick detection aids both the attacker and the

administrator of the system. It may be possible to prevent holes by integrating a

checker into the operating system. The checker would examine a sequence of

changes to the security configuration and only apply the sequence if it leaves the

system in an acceptable state. Additional benefits and limitations of rule based

security checkers will become apparent after they have been implemented for

other operating systems.

This research touched on two areas that are ripe for further research.

Users need to express their desired access policy, but languages for expressing

these policies do not exist. It is clear that a vocabulary based on read and write

operations is not sufficiently expressive to meet even existing needs. It is not

clear what would make a better vocabulary or what would serve as appropriate

operators for combining pieces of a policy specification. Another area to explored

is the use of rule based systems to synthesize security configurations from policy
specifications. This area is has several computability problems, but carefully

chosen restrictions might avoid these problems in practice.

900



References1

1. Bell, D.E. and LaPadula, L.J. Computer Security Model: Unified Exposition
and Multics Interpretation. ESD-TR-75-306, The MITRE Corporation, Bedford,
MA, June, 1975..

2. Bobrow, D.G. and Winograd, T. "An Overview of KRL, A Knowledge
Representation Language". Cognitive Science 1, 1 (1977), 3-46.

3. Brand, S. (Editor). Department of Defense Trusted Computer System N4
Evaluation Criteria. CSC-STD-001-83, DOD Computer Security Center, 1983.

4. Davis, R., Buchanan B. and Shorliffe E. "Production Rules as a
Representation for a Knowledge-Based Consultation Program". Artificial
Intelligence 8, 1 (1977), 15-45.

5. DEC. VMS Security Manual. Digital Equipment Corp., 1981.

6. Denning, D.E. "Certification of Programs for Secure Information Flow".
CACM 20, 7 (July 1977), 504-513.

7. Dion, L.C. A Complete Protection Model. Proc. Symposium on Security and
Privacy, IEEE Computer Society, New York, NY, 1981, pp. 49-55.

8. Fikes, R. and Kehler T. "The Role of Frame-Based Representation in
Reasoning". CACM 28, 9 (September 1985), 904-920.

9. Gibson, W.. Neuromancer. ACE Books, New York, NY, 1984.

10. Grampp, F.T. and Morris, R.H. "Unix Operating System Security". Bell
Laboratories Technical Journal 63, 8 (October 1984), 1649-1671.

11. Harrison, M.A., Ruzzo, W.L. and Ullman J.D. On Protection in Operating
Systems. Proc. 5th Symposium on Operating System Principles, ACM, Nov,
1975.

12. Honeywell Federal Systems Division. SCOMP Trusted Computer Base.
Honeywell Information Systems, Inc., McLean, VA, July, 1984. 'A/

13. Lampson, B.W. "Protection". Operating Systems Review 8, 1 (January 
1974), 18-24..

.,"

, N ,, '"



14. Levesque, H.J. and Brachman R.J. A Fundamental Tradeoff in Knowledge
Representation and Reasoning (Revised Version). Proc. CSCSI-84, London,
Ontario, 1984, pp. 141-152.

15. Lipton, R.J. and Snyder, L. "A Linear Time Algorithm for Deciding
Subject Security". JACM 24, 3 (December. 1977), 455-464..

16. Lockman, A. and Minsky, N. "Unidirectional Transport Rights and Take-
Grant Control". IEEE Trans Soft. Eng. 8, 6 (November 1982), 597-604.

17. McDermott, J. "RI: The Formative Years". A[ Magazine , 2 (1980),
21-29.

18. Organick E.. The Multics System: An Examination of its Structure. MIT
Press, Cambridge, MA, 1971.

19. Raphals, L.A. and Chassell, R.J.. IKE 1.0 Users Guide. LISP Machine
Inc., Cambridge, MA, 1986.

20. Rees, J. and Clinger W. (Editors). Revised 3 Report on the Algorithmic
Language Scheme. Massachusetts Institute Technology, 1985. 0

21. Sacerdoti, E. Nets of Action Hierarchies. Ph.D. Th., Stanford Univ.,
1975.

22. Sandhu R.S. Analysis of Acyclic Attenuating Systems for the SSR
Protection Model. Proceedings of the 1985 Symposium on Security and Privacy,
IEEE Computer Society, Silver Spring, MD, 1985, pp. 197-206.

23. Snyder, L. "Formal Models of Capability-Based Protection Systems".
IEEE Trans. Comp. C-30, 3 (March 1981), 172-181.

24. Weissman C. Security Controls in the ADEPT-50 Time-Sharing System.
Proc. AFIPS 1969 FJCC, AFIPS Press, Montvale, NJ, 1969, pp. 119-133.

25. Wood and Kochran. System Library Series. Volume :Unix System
Security. Hayden Books, 1986.

26. Wulf, W., et al. "HYDRA: The Kernel of a Multi-processor System".
CACM 17, 6 (June 1974), 337-345.

92 r

N'



OFFICIAL DISTRIBUTION LIST :

Director 2 copies

Information Processing Techniques Office

Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research 2 copies

800 North Quincy Street

Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies

Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies

Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies

Office of Computing Activities

1800 G. Street, N.W.
Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy

Head, Research Department

Naval Weapons Center
China Lake, CA 93555 1

. . _

F /l
r-/ VM


